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ABSTRACT 

This report deals with the specification of the angular position 
of objects by measurement of the angles of arrival of light beams; and 
with the measurement uncertainties due to atmospheric turbulence.   A 
survey of the literature is presented showing two approaches to angle 
of arrival, one for large aperture receivers and one for a single 
small aperture or a pair of pinholes.    Pertinent defining equations 
are presented for both cases and values are calculated for arrival 
angle mean square measured with a large aperture and correlation of 
arrival angles for small apertures.    A synonymity between the small 
aperture correlation function and large aperture mean square angle of 
arrival is presented and used to present further large aperture mean 
square values.    This provides a significant simplification in calcu- 
lation and measurement capabilities.    Finally the regions of accuracy 
are presented for the Rytov approximation which forms the basis for 
the numeric calculations. 
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I.    INTRODUCTION 

When optical methods are used to observe an object through the 
atmosphere, the turbulence in the atmosphere may cause the apparent 
position of the object to fluctuate. This motion is caused by turbu- 
lence-induced fluctuations in the electromagnetic phase of the received 
wave. The received rays appear to change direction, so that the term 
angle of arrival fluctuations is used to describe this phenomenon. 
Knowledge of the angle of arrival fluctuations or its statistical 
properties is obviously necessary for analysis of systems specifying 
the accurate location of terrestrial or extraterrestrial object by 
optical means. It is also conceivable that, since angle of arrival 
fluctuations are induced by atmospheric turbulence, arrival angle 
statistics could be used as a convenient tool for study of turbulence 
characteristics. 

The literature on angle of arrival is scattered and offers a wide 
range of views, approaches, and restrictions. For example there are 
two general approaches to arrival angle. The first considers the light 
detected by one or several minute apertures where phase is linear and 
amplitude is constant across the aperture. The quantities of interest 
for this approach are the arrival angle variance and correlation 
function, the mean being easily demonstrated to be zero. Alternatively 
there is consideration given to a single large aperture where the phase 
front is crinkled and the amplitude is not at all constant across the 
aperture. Generally the literature considers only the arrival angle 
variance for such a situation. For either approach the derivations 
based on the Rytov, the geometrical optics or other approximation may 
be given. 

It is desirable to be able to predict the angle of arrival 
observed by both large and small aperture methods in terms of the propa- 
gation range, receiver and aperture characteristics, wavelength, and 
turbulence parameters; outer and inner scale and structure parameter. 
Some cases have been considered, but most are valid only for restricted 
ranges of the variables described earlier and all use several approxi- 
mations. 

The original object of this report was to examine the literature, 
to categorize these different situations and approximations, and to 
extend the results where feasible. This has been done. Basic extensions 
involve the computation of arrival angle functions using an index 
spectrum whicli accounts for the turbulence inner and outer scales. 

In the process of performing these calculations, a synonymity 
between a small aperture correlation function and large aperture variance 
function was discovered. This synonymity provides great simplification 
in the calculotion and measurement of these two quantities. The 
synonymity is presented and derived. 



In the balance of the report there is first a general discussion       i 
of angle of arrival in Chapter II. This is followed by analytic 
expressions for angle of arrival statistical functions for first the 
small aperture approach (Chapter III) and then the large aperture 
approach (Chapter IV). Numerical results are presented in Chapter V 
in graphical form for a wide variety of cases along with a discussion 
of the limits of applicabi "M ty of the Rytov approximation. Chapter VI 
deals with the synonymity of the large and small aperture approaches. 
Finally, the summary appears in Chapter VII. 

II.   GENERAL DISCUSSION OF ANGLE OF ARRIVAL 

In this section we introduce in detail the various concepts and 
quantities associated with the two major approaches to angle of 
arrival. First the general measurement situation is considered. The        . 
small and large aperture situations are discussed to the extent that 
typical formulae are presented. 

As generally used, the term angle of arrival is concerned with 
light emitted from an object and detected by a receiver. Pragmatically 
what is desired is a listing of the angular coordinates of the object 
with respect to some fixed reference system. In simple minded terms 
this can be obtained by imaging the object either with a lens (finite        I 
aperture) or a pinhole camera (very small aperture) and taking a line 
from the object through the center of the input aperture. The angular       , 
coordinates of the line then define the direction of the object. If 
there are no intervening refractive index fluctuations then the image        ' 
of a point object may be a diffraction limited spot with a well defined 
center. The angular coordinates determined by the spot center can be 
very precisely chosen in such a case. i. 

Complications arise because of random index fluctuations which        | 
cause the image to move around and/or to blur, depending on the physical 
details of the receiver. Random image motion is then interpreted as 
random fluctuations in the observed angle of arrival. Further fluctu- 
ations in the shape of the received image of a point object also cause       I 
fluctuations in the "center of gravity" of the image and may be iit- *- 
terpreted as fluctuations of the angle of arrival. It is the statistical 
description ov these random fluctuations in arrival angle caused by 
refractive index fluctuations that form the basic subject of this report.     1, 

It might be noted that the arrival angles measured with an optical     ■ 
instrument might, even in the absence of refractive index fluctuations, 
not be the true angular coordinates of the object. For example, if 
there were a refractive index gradient perpendicular to the light path, 
the light rays would be bent causing an anomolous indication of the 
true angles. This effect causes the phenomenon of "looming" and ^ 
causes the sun to be visible after it has in actuality dropped below 
the horizon. Such effects will not be considered in the present report. 



There are various approaches to the measurement and prediction of 
angle of arrival fluctuations. The measurements are generally cate- 
gorized by the size of the aperture used for the receiver. Perhaps the 
cleanest approach involves the use of a very small pinhole sized aperture, 
as shown in Fig. 1. The pinhole is chosen sufficiently small so as to 

FLAT 
WAVEFRONT 

DIFFRACTION 
PATTERN 

y 

ARRIVAL 
ANGLES 

Fig. 1.    Definition of small aperture angle of arrival. 

be smaller than the spatial extent of any amplitude variation, and so as 
to contain only a flat wavefront.   The displacement, d, of the center of 
the diffraction pattern in a given direction, then, is related to the 
angle of arrival, a, by the expression 

(1) d = Rot 

where R is the distance from pinhole to diffraction pattern. In this 
situation, motion is caused only by phase fluctuations and not by 
amplitude fluctuations of the incoming light. 



As shown in Fig. 1, two angles of arrival are defined; the ele- 
vation angle a, and the azimuth angle, ß. One can consider various 
statistical functions of these angles. The simplest are the variances,* 
such as <(a-<a>)2>. (The angular brackets indicate ensemble average.) 
There are also the two point arrival angle correlation functions for 
angles of arrival defined at two separate pinholes as shown in Fig. 2. 
Two such correlation functions exist, differentiated by the relative 
positions of the pinholes with respect to the direction of motion of 
the spots, as shown in Fig. 2. These will be discussed in more detail 
in the next section. 

To calculate angle of arrival for a pinhole aperture the wave- 
front tilt is determined using the optical distance, L, or the 
equivalent electromagnetic phase shift, S = k /., along two rays through 
the turbulent atmosphere from the source to opposite sides of the 
receiver aperture. As shown In Fig. 3, we have for 

(2) 
n->-0 

The type of wave, i.e., plane, spherical, etc., will determine the 
functional form of L. The arrival angle variance <a^> is then expressed 
as the ensemble average of the square of the average product of two 
optical phases. 

(2a) 2   _ 1 
<a > , 

ay ̂ r2   
<s^ ^2> 

y1=y2 

(2b) 7   3^   Bs(y2-yi) 
y1=y2 

(2c) ^ay^  MW 
y1=y2 

*The terms angle of arrival variance and mean square value will be used 
interchangeably. They are identical since the mean is chosen to be 
zero. Similarily, the terms covariance and correlation function will 
be used interchangeably. 

• 

1 
1 
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Fig. 2. Definition of small aperture angle of arrival 
correlation functions. 



INCOMING 
WAVEFRONTS 

DEGRADED 
WAVEFRONT 

Fig. 3.    Example of a small aperture angle of 
arrival calculation. 

Equation (2a) uses the standard form for the phase correlation function 

Bs(y2-y1) = <s{y1) s(y2)> 

and the associated structure function, 

Ds(y2-y1) = 2 [Bs(0) - B^y^)] 

written for a homogeneous atmosphere.    Equations similar to Eq. (2c) 
will be used subsequently in the report. 

Various techniques appear in the literature for the extensions 
and evaluation of Eq.  (2c).    They use expressions for the phase 
correlation or structure functions based on either the eikonal equation 
approachH,2,3] of ray optics, or based on the Rytov approximation[4,5,6,7] 
(which reduces to the eikonal equation approach for short ranges).    They 
also use a variety of correlation functions, structure functions or 
spatial spectra to represent the atmosphere. 



An apparatus using pinhole apertures has one possible drawback as 
a practical device for angular coordinate measurement- That is the 
high source signal level required because of the small receiver aperture 
size. However it does provide a measure of arrival angle variance and 
correlation functions and, therefore, could be useful under controlled 
conditions where the source is available. Further the associated ana- 
lytical calculations of the statistical quantities are simplified by 
being amplitude independent. 

The other approach to arrival angle measurement employs a large 
aperture receiver with a lens to image the object as shown in Fig. 4. 

APERTURE 
ARRIVAL   ANGLE 

VARIATION 

Fig. 4.    Definition of large aperture angle of arrival 

This situation is more practical because of its light-gathering ability 
and subsequent increased sensitivity.    However, it is more difficult 
to work with conceptually because of random spatial wavefront and 
amplitude fluctuations superimposed upon the no-turbulence fields. 
Thus, while the wavefront normal provided a reasonable indication of 
arrival angle for a pinhole aperture, there 
wavefront normal for a large aperture.    One 
image, but amplitude and phase fluctuations 
of the incoming light cause motion of the 
its shape, thereby increasing measurement 

is very apt to be no unique 
can instead use the focused 
about the mean wavefront 

image and deterioration of 
uncertai nty. 



The quantity generally calculated for the large aperture approach 
is the arrival angle variance.   To do this the instantaneous arrival 
angle is defined using some sort of optimization technique involving 
either fitting a smooth wavefront to the input fields[8,9] or defining 
the arrival angle to be that which has the maximum power.[10]   These 
calculations are generally more complex than pinhole aperture calculations 
because of amplitude fluctuations over the input aperture, and because of 
the multiple integrations required. 

As an indication of the approach to arrival angle calculations 
for large aperture situations, consider the following approximate 
calculation from Hufnagel.[8]   Assume that to a good degree of 
approximation the wavefront at any instant can be described by a plane 
which matches the actual wavefront at four points, the intersection of 
the transverse coordinate axis with the aperture edge.   Then the phase 
deviation along the x axis will be 

*(f. 0) - ((.(-£, 0), 

the linear variation of the wavefront from the x axis will be 

U(f. 0) - *(-§. 0)]/k 

and the angle of tilt in the x direction will be 

(3a) ^ = U(|, 0) - *(-|. 0)]/kD. 

Assuming that a   has a zero mean, then its variance will be 
x 

(3b) «, 2> = <U(|. 0) - ♦(-§. 0)>2/k2 D2 

(3c) = Ds(D)/k2 D2 

(3d) = 6.88(D/r0)
5/3/k2 D2 

(3e) = 6.88/k2 r0
5/3 D1/3 

where the phase structure function, DS(P), has been approximated by 



Ds(p) = 6.88(p/r0)
5/3 

where r   is Fried's transverse coherence length given by 

ro = (6.88/2.91 k2L C2)3/5. 

There are also other approaches to angle of arrival. One is 
an examination of arrival angle of light from a line source,[11,12] 
representing an extension of the small aperture approach. Another is 
a calculation of arrival angle variance using the Fokker-Plank 
equation[13] which represents a unique approach. These techniques 
will not be mentioned further. A few experimental measurements have 
been described by Coulman.[14,15] 

To summarize, this section has presented a general discussion of 
various aspects of angle of arrival work, indicating the sources of 
uncertainty considered, and discussion of the two models for approaching 
the subject. 

III.  SMALL APERTURE ANGLE OF ARRIVAL CALCULATIONS 

In this section the exact expression for the small aperture 
angle of arrival statistical quantities are derived and examined. 
They include two types of correlation functions and the mean square 
angle of arrival. The formalism to be presented follows closely that 
presented by Tatarski [5, section 40]*. As mentioned earlier, the 
small aperture technique assumes that the aperture is small enough 
that the aperture size has no effect on the angle of arrival indication. 
Thus, the phase difference across the aperture is assumed linear and 
the instantaneous amplitude is assumed to be independent of position 
in the aperture. Under these conditions the wavefront normal will 
uniquely define the angle of arrival at any instant of time. 

Since the aperture size will not affect the final result, the 
optical path lengths to pairs of points are considered and the aperture 
sizes shrink to zero. The situation is shown in Fig. Sa. Using the 
definition in Eq. (2) we have 

*For equations taken from [5], the section number and equation number 
will be given in parentheses. 



(a)   B, 

(b)   *ß 

Fig. 5.    Geuietry used to calculate small aperture 
arrival angle correlation functions. 
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[L(z,0,0) - LU.O.m)] 
(4a)     a1 = limit   

n1 

Sl -S2 = limit  -T;  

rn-0       ' 

[LCz.O.y^-noA) - Uz.O.y, + n^n 
(4b)     a, = limit ■  c no 

n,-*0 c 

S3 " S4 = limit  -^r—2- 

n2^0     ^ 

where 

$1 - phase at the point (z,0,0) 

Sg = phase at the point (z,0,n|) 

53 = phase at the point (z.O.y-j-r^ A) 

54 = phase at the point (z.O.y^rigA). 

These points are shown in Fig. 5a. 

The elevation angle of arrival correlation is defined as 

(5a)      Ba(y1) = <a(z,0,0) a(zJ0,y1)>. 

To simplify we substitute Eq. (4a) and Eq. (4b) into Eq. (5a) 
giving 

11 



<(s1 - s2)(s3 - s4)> 
(5b) B (y) = limit —' 1—^ — 

where ^ = r\2- 

Using the identity that 

(5c) (ST - s2)(S3 - s4) = }ms} - s4)
2 + (s2 - S3)2 - (ST - S3)J 

-(s2 - s4)2]. 

Equation (5b) can be written in terms of the phase structure function, 
DS(P). 

(5d) Ba(y1) = limit -^ [D^yT+n^ + D^y^) - ZD^y,)]. 
n -j  2k T]] 

Expanding D (y-, ± n-i) in a Taylor series we have 

(5e)     D^  ± r,^ = D^y,) ± ^ D^y^ + 1/2 n2 D^y^ + ••• 

which, when substituted into Eq. (5d), yields [5, (40.35)] written 
as Eq. (5f) 

^      Ba^l)=^2DS ^l) 

where D§(y) is the phase structure function and the primes denote 
derivatives with respect to the argument. 

The azimuth angle of arrival, ß, shown in Fig. (5b) is calculated 
in a similar manner. Using the points shown in Fig. (5b) we have 

(S1 " S2) 
(6a)     ^  = limit   'kg 

^-0     1 

12 



(s3 - s4) 
(6b) ß2 = limit       *kt. 

c^ 2 

where 

S1 = phase at the point (z, - Ci/o» 0) 

Sg = phase at the point (z, + ?,.«, 0) 

53 = phase at the point (z, - c2/2, y^ 

54 = phase at the point (z, + ?2.2, y^ 

and with ^ = 52 

(6c) B^y^ = limit -^y- <(S2 - S1)(S4 - S3)>. 

Cl^)   k cl 

Using the identity in Eq. (5c) we again have the correlation in terms 
of the phase structure function.   The only difference is that 

(6d) <($, - s4)2> = DS (icf+yf]. 

Then Eq. (6c) becomes 

(6e) B^y^ = limit -^y- [Ds  (>|yf+^J - Ds(y1)]- 
?1^0    k cl 

Since the limit will force c to be arbitrarily small the square root 
in Eq. (6e) can be expanded in a power series. 

13 



Using the Taylor's series expansion in Eq. (5e) we have 

2 
(6g) (JT*^) = W+277 Ds(yi) + --     ' 

When substituted into Eq. (6e) the resulting expression is [5,(40.38)], 
written as Eq. (6h) 

{6h) 
i    Ds(yi) 

My,) ■ ^ -V- 'e^i 

Comparing Eqs. (5f) and (6h) we see that the interpair displace- 
ment with respect to the pair separation determines the final form for 
Ba(yi) and Bß(yi). To calculate Ba(yT) the displacement was parallel 
to the separation. On the other hand, the displacement was transverse 
to the separation when Bg(yi) was calculated. 

The dependence on the interpair displacement when the interpair 
direction is neither parallel or perpendicular to the interpoint 
direction has been found explicitly by Strobehn and Clifford.[7] For 
sample points oriented as in Fig. 6 we have 

Fig. 6. Generalized geometry to calculate small aperture 
arrival angle correlation functions. 
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(7) 
1        •>      1   Ds^ 

B (p) = l  D"(p) cos2Y + -U ^-— c    2k^ s       2k^  p sin Y 

where 

e = angle of arrival of interest 

Y = angle between interpair displacement 
and pair separation. 

For Y = 0 and Tr/2 we have the expressions for BQCP) and Bg(p) 
respectively. 

The smallness criterion for the aperture size can now be 
considered. Recall that it was assumed that the aperture size had 
no effect on the angle of arrival. From Eqs. (5f) and (6h) we see that 
for Ds(p)a p , the angle of arrival correlation Is independent of p. 
It is well known that for the Kolmogorov refractive index fluctuation 
spectrum, Ds(p) has this form for p less than the turbulence inner 
scale. Thus, these results apply to apertures smaller than the inner 
scale. For apertures larger than this, the large aperture method 
should be used. 

In this section the basic equations for small aperture angle of 
arrival correlation functions have been derived. These expressions 
will be used in sections V and VI. 

IV.   LARGE APERTURE ANGLE OF ARRIVAL CALCULATIONS 

In this section pertinent formulas for the large aperture angle 
of arrival mean square value are derived and discussed. The linear 
phase and constant amplitude assumptions made for the small aperture 
angle of arrival calculations begin to break down as the aperture 
becomes larger than the inner scale. The phase front becomes more 
distorted than can be accurately described with a linear wave tilt. 
Secondly, amplitude distortions become significant. These problems 
have been considered in part by various workers. 

Two major approaches are used, both involving an extremum 
technique. The first approach to define the instantaneous arrival 
angle as the direction for which the instantaneous power is the 
maximum. The second is to fit expression for the instantaneous wave- 
front to a series of polynomial surfaces using a least squares fit. 
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One of the polynomials is a flat plane, so that the normal to the 
plane then is taken as the direction of the wave. Both approaches 
give the same basic expressions for the instantaneous angle of arrival 
direction. The derivations will now be outlined. 

The first approach to be considered is that which uses the 
direction of maximum instantaneous power to define angle of arrival[10] 
The technique is to split the mathematical expression for the electro- 
magnetic phase into two parts, one representing a plane wave and the 
other representing the deviations from the plane wave. The direction 
of the plane wave normal is chosen to maximize the expression for 
the power. It is assumed that the deviations of the electromagnetic 
phase from the plane wave value are small and that amplitude fluctu- 
ations over the input aperture are neglegible. Thus, let the field 
arriving at the receiving aperture be 

Ee Uir) 

where r = (x,y) denotes the transverse position of the input aperture. 
The term ^(f) is equivalent to S(x,y,z) in the previous section.    Then 
the component of the field in the direction with transverse spatial 
frequency JT is 

(8) e(^ /dFEeiU(r) -< • ?) 

and the power in the same direction is 

(9) P(iD *{ ~ cJitir) - K • r) / dr Ee 

Following Heidbredder,[10] we define A(r) the phase difference from 
a flat plane. 

A(r) = ^(r) r. 

Our first object is to find an expression for the value of K 
for which P(K") will be maximum. We assume that the phase difference 
A(r) from that optimum v?lue will be small. Then, rewriting Eq. (9), 

16 



_ ,2 
(10a) P{7) =]- |/dFEeiA(F) 

o 

2 
(10b) P{7) = ^- 1/ dr E cosA(r)l    + J- j/ dr E s1nA(r)|- 

(10c) 4 ^_ |/ dF (! . |!) E|    +1- |/ dF AE j- 

where the r dependence of A IS implied.    Differentiating Eq. (10c) with 
respect to K   to find the optimum value we find 

A 

(lla) |L.= o = 2/dF1{l-^)E/dF2|i-E 

j-    3A ./d^ AE/dr2f-E 

(lib) = 2 / d^ E / dr2 U2 - ic • r2) x2 E 

/ dr E / dr2 Ex2. 

The aperture is assumed to be symmetric so that the integrals over odd 
powers of x and y are zero.   Thus the integral in the second term and 
the integral over x,y9 in the first term vanish.   Solving for K   then 
gives ^ x 

(12) s / dr t(?) x E 
x        / dr x^ E 
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The mean value of KX is taken to be zero. This is based on the assump- 
tion that the atmospheric turbulence is isotropic so that the mean 
value of (|)(r) is zero, i.e., fluctuations of phase are equally likely. 

The variance of KX and the associated component of the angle 
of arrival, ox 

(13) ax = 

Kx 
k 

are gi ven by 

(14) <> 
_ <4> 

.2 

// d'r-! dr2 E1 E2 ^(r^ ♦(r2)> x^ 

/ dr *d E 

Identifying the phase correlation function 

Bs(r2-r1) = «K^) (()(r2)> 

relating it to the phase structure function 

(15) Bs(r2-rl) = } tDs(o,) " Ds(Vrl)] 

and again using the fact that the aperture is symmetric gives 

(16) 
2     // dri dr2 E1 E2 Ds( y^ ^ x2 

<ax> = " " 
2k' / dr x2 E 

Equation (16) is generally evaluated for circular apertures, 
obtain the appropriate expression for that case first define 

To 
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rl= rl r2 = r2 

x, = r^ cos e. x2 = r2 cos 92 

so that the denominator of Eq. (16) is (taking the amplitude E to be 
constant), 

(17) 2k' 

R 2ir 
3   2 dr, de r, cos e E 

o o 

2k2 (rrj- )2 E2. 

The expression for the arrival angle variance is then 

(18)<a
2> = - 9-0 

R 2ir R 2Tr .  

I  I r2 d^ de     [ rgdrgdegE^ cos(e1-e2)Ds(>|r1+r2-2r1r2cos(e2-e1)) 

o o 

2k2    (irR4/4)2 E2 

After further defining 

Y = e2-e1 

ß = l/2(e2+e1) 

and performing the e integral, the result is, 

R R 

(19) 2          o            o 
<a > = -   x 

K K IT r  

j dr^2 J dr2 r2 J dy cosy Ds(Jr^+r2-2r1r2 cosy) 

TT k2(R4/4)2 
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Equation (19) will be used in the next section for numerical evaluations, 
Heidbreder evaluates Eq. (10) with various synmetric aperture weighting 
functions VKriMro) multiplying the phase structure function finding 
relatively small changes for gaussian weighting functions with half- 
widths the order of the radius.    He also finds some small correlation 
between the plane wave fluctuations of the phase front and the residual 
phase for a one dimensional aperture (infinitesimal in the other 
dimension). 

The second approach, due to Fried,[9] in which the expression 
for the instantaneous wavef^ont is fitted to a series; of polynomials 
will now be considered.   The polynomials are similar to the Zernike 
polynomials, orthogonal over a circular area.   The first six are 

2       2 

2       2 
(20) F2(F) ■—S—   , F5(F) =   "   -y > 

^ 5 J^75" 

f3m - -£_ . F6(r) = M. 

UF* U&ü 

they are orthonormal so that 

(21) / "'WW Fn(7) Fffl(f) - V, 

where 

(22) W(F) = 
1        r < R 

0       r > R 

L 

L 
20 
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The wavefront ${7)  is then expressed as an infinite series of 
these polynomials: 

*(?)= J anFn(F). 
n=l 

The second and third polynomials represent the flat of the 
wavefront.   Thus the spatial frequency and arrival angle associated 
with the flat componant are given by 

(23a) a = ^s 9rad {a2 F2^ + a3 F3^} 

=       1      {a2 x + a3 y} 

(x and y are unit vectors.)    Further, the variance of the angle of 
arrival in the x direction is 

(24) <(A }-   <£>    . 
4 

Trir/4 

The polynomial series is fitted to the wavefront at any instant 
by choosing the coefficients so as to minimize the mean square 
deviation between the series and the wavefront proper: 

(25)     ^L / df W(f) Mf) . I   an Fn(F)]2 = 0. 
2 n-1 

Squaring the term in the brackets, performing the indicated different!* 
ation, and solving for a» gives 

(26)     a2 = / dr W(r) ♦(r) FjF). 
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Equation (26) can be shown to be comparable with the expression 
by Heidbreder. To do that, use the expression for F2(»r) in Eq. (20) 
to give a2 in Eq. (26) and substitute into Eq. (24). After using 
Eq. (15) to simplify, the result is 

(27) «A = -7—L ^ // dr, dr2 W(r1) W(r2) x1x2 MT^FT) 
x       2kZ(7TR4/4)t /J      '      z       ' 2     1  Z   s    2   1 

which coincides very nicely with Eq. (18). 

Fried and Heidbreder both evaluate the angle of arrival variance 
assuming that the wave structure function is approximated by the 
phase stricture function, i.e., the range is sufficiently short that 
amplitude effects are negligible: 

(28) yr) = Ds(r) = 6.88(f-)5/3 

where r   is Fried's transverse coherence length given by 

(29) ro = (6.88/2.91 k2LC*)3/5    . 

The result is 

(30a) <a*> = 7.064/k2 ro
5/3 D1/3 

(30b) = 1.026 x 6.88/k2 r0
5/3 D1/3. 

Equation (30b) agrees closely with the approximate expression 
derived by Hufnagel[8] (Eq. (3e)). 

To account for amplitude effects the phase structure function 
can be replaced with the wave structure function and the polynomial 
series now has complex coefficient:.[9]   One drawback as explained 
by Fried is that the results are difficult to interpret. 
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Concluding, we see that the angle of arrival for a large 
aperture depends on the phase structure function also. Thus, these 
results are as general as the approximations used to calculate the 
phase structure function. A specific phase structure function more 
general than Eq. (28) will now be used to calculate extended numeric 
results. 

V.   NUMERIC CALCULATIONS OF ANGLE OF ARRIVAL 

In this section the general expressions given previously for 
arrival angle mean square and correlation functions are evaluated. 
The effects of such parameters as outer and inner scale, range and 
type of wave are demonstrated for both large and small aperture cases. 
The range of parameters covered is such as to give a reasonably complete 
set of curves for comparison with experiments 10.Sp performed at the 
RADC Laser Propagation Range. 

To proceed with the evaluation, we note that the angle of arrival 
statistical functions in Eqs. (2c), (5f), and (6h) are all in terms of 
the phase structure function. To evaluate these expressions an integral 
form of Ds(p) is used,[5] 

(31)     Ds(p) = 47r2k2L j [1 - J0(KP)] 
K L 

• fN(lc) K dlC 

^2 
2, 

where    k = |^ 
A 

p = separation 

L = propagation range 

$u{<) - three dimensional refractive index fluctuation 
spectrum. 

For a spherical wave, a similar expression was derived by Carlson 
and Ishimaru.[16] 
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(32) Ds(p) SA2 
OO la 

J    [1     -   J0(<P)]   | k C0S    ^m >L(L-n)> 

$N (-H dn KCIK, 

Both of these expressions are the result of using the Rytov approxi- 
mation and are valid where the Rytov approximation is valid.    This 
validity will be discussed later. 

Both expressions (31) and (32), use the refractive index 
fluctuation spectrum *M(K).    Several models for *N have been proposed 
and these are discussed in Appendix A.    For the calculations in this 
report, the model used is 

(33) 

2/   2 
2       e 

$N(K) =  .033 CN   —2-      2TTT76 
(K    + <„ ) 

where Km = 5.92/iL m 

Ä- = 

K_    = 

inner scale of the turbulence 

L   = outer scale of the turbulence. 

Using Eq.  (31) in the expressions derived earlier in Eqs.  (2c), 
(5f), and (6h) we have for the small aperture angle of arrival 
expressions 

(34) <a2> A [i +4-sin!ir] K3 ♦N^ dK 
K   L 
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(35) Bg(p) = 2A ...A-,    J1(KP)    3 
K   L 

K    ^(K) CIK 

(36) 
2 

B (p) = lA  f    [1 + -f- sin ^4 Jo(Kp) K3 $N(K) (JK - B (p) 

Similar expressions were also obtained by Strobehn.[17] The corre- 
sponding equations for the spherical wave case can be found by making 
the substitution 

(37) 1 + A sin A L   r 
*N(K) \ ™ (^1^) 

■  fN(^L) dri 

in Eqs. (34)-(36). These expressions are suitable for numeric 
evaluation since ^(K) approaches zero rapidly for a finite value 
of K  so that the upper limit of the integrals can be made finite. 

As noted in Appendix B, when the outer scale, L0 becomes 
infinite, Eq. (33) reduces to the Kolmogorov spectrum with inner 
scale, ä,O.[5] and Eqs. (32) and (34)-(36) can be integrated ana- 
lytically. Thus, defining 

D = m 
2 2 

and g = -^ m 

we have 
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(38) 

(39) 

Bs(p) = 1.028LCN
2Km

1/3-{|1F1(l2.-g) 

+ D-1/6 [cos ^ Re^F^-l^.ll)} + sin ^ lm^F,(4,2^)|] 

Ba(p) = Bß(p)- .226LCN
2<in

7/3|i1F1(f3.-g) 

+ D-7/6 [sin ^ Re^F^^S.^)} - cos ^ 1,1^(1 3^)| 

(40) 2     1/3 -1/6 <a > - <ß > = L CH
d Km

l/* (.904 + 1.088 D",/0 cos ^J). 

For large p, the asymptotic forms are 

(41) Bß(p) ^ 2.43 L CN
2 p-1/3 

(42) Boi(p) ^ 1.62 L CN
2 p"1/3. 

The small aperture angle of arrival mean square and correlation 
function were calculated for many cases.   These will now be presented. 
Equations (38), (39), and (40) were evaluated for several typical 
values of range and inner scale.   The results are shown in Figs. 7-34. 
The parameters used were chosen to agree with those that might be 
present at the RADC Laser Propagation Range.    For example the ranges of 
304.8 m, 914.4 m and 1524 m correspond respectively to 1000 ft, 3000 ft 
and 5000 ft, all ranges used at the RADC Range. 
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First the mean square angle of arrival is considered. Figures 
7 and 8 show it as a function of range, first for two inner scales and 
infinite outer scale as given in Eq. (40), and second for three different 
outer scales taking the inner scale as 1 rm and numerically integrating 
Eqs. (33) and (34). For simplicity the mean square is normalized to 
the refractive index structure parameter, C[^. It is noted that the 
mean square increases as the outer scale increases and as the inner 
scale decreases. In either case the range of turbulent spatial fre- 
quencies interacting with the light beam has increased, thus increasing 
the effect. Of the two scdles the inner scale has the larger effect on 
the arrival angle flucuations, because, while the smaller scale eddies 
are less prevalent, they scatter light at the greatest angles. 

Typical angle of arrival correlation curves are shown in Figs. 
9, 10, and 11, evaluated from Eqs. (34), (35), and (36). They show 
the effect of inner scale on the correlation functions. Figures 9 
and 10 show the autocorrelation functions Ba(p)/<a^> and Bg(p)/<a^> 
for a range of 304.8 m, infinite outer scale and inner scales of 1 cm 
and 1 rrm. Figure 11 shows the left hand portion of Fio. 10 in detail 
to display the fine structure of the initial roll-offs. The rapid 
roll-offs of the autocorrelations, as the separation is increased 
slightly from zero, is evident. However, as the separation exceeds 
the inner scale, the curves level off. The roll-off and break point 
are strongly dependent on the inner scale. 

The inner scale dependence can be explained. As noted earlier 
for p < in,  the phase structure function obeys a square power law and 
the correlations Bo(p) and Ba(p) are equal to the mean square angle of 
arrival. From a physical standpoint we note that the inner scale is 
a characteristic dimension of the smallest, blob in a turbulence cell. 
Thus, we expect the angle of arrival correlation for p < s,p to be nearly 
the same as the mean square value. It is very likely, that the two 
regions considered on the wavefront were perturbed by the same blob 
or a closely correlated blob. As the separation is increased and 
approaches the inner scale the number of blobs increases rapidly in 
comparison to the increase in separation. However, as the separation 
becomes sufficiently large the total number of Dlobs masks the increase 
in blobs. Thus, the roll-off of the correlation slows down and levels 
off. 

The inner scale dependence can be derived from the expressions 
used earlier. Since we are dealing with an inner scale phenomenon 
the outer scale can be ignored and the analytic expressions are used. 
Thus, for p << £0 we have 

BQ(P) 

,2 m 
(43)      -^-9-  = i - .0206 

<ß 



304.6 609.6        914.4 
L (m) 

1215 1524 

Fig. 7.   Small aperture mean square angle of arrival 
versus range for infinite outer scale and 
two inner scales. 
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1826 

Fig. 8. Small aperture mean square angle of arrival 
versus range for two inner scales and three 
outer scales. 
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within a correction of D   '    cos ir/12.    For p « Jl0 we see that Km p 
will be less than one and from Eq. (43), Bg(p) = <32> as expected. 
A comparison of the exact result and the approximate result is shown 
in Figs. 11 and 12.    Figure 11 shows both cases of ig * 1 m and 1 cm 
and Fig. 12 is a magnified view of the case of JU ■ 1 cm.   The structure 
function, DN(P)/CN , is also shown in Fig. 12.   We see that the approxi- 
mation given in Eq. (43) breaks down around the point where D^(p) 
changes from a r2 dependence to r2/3 dependence as expected. 

The information in Figs. 9, 10, and 11 is repeated in Figs. 13-16, 
along with other curves to show the effect of varying the range.    Instead 
of plotting the curves on linear scale which has a rapid variation near 
zero separation, the   urves are plotted on log-log paper.   Also, instead 
of plotting the autocorrelation which suppresses the range information, 
the correlation function is plotted, normalized for convenience to the 
turbulent structure parameter.   The fact that the curves are identical 
except for a vertical displacement indicates that the range information 
is primarily in the mean square for infinite outer scale. 

The effects of the outer scale obtained from computer evaluation 
of Eqs. (33)-(36) are shown in Figs. 17-20.   The azimuth and elevation 
angle correlation are shown in Figs. 17 and 18 for a range of 304.8 m, 
inner scale of 1 mm and three values of the outer scale.    The information 
is repeated in Figs. 19 and 20 as log-log plots of the two arrival angle 
correlation functions normalized to the turbulence structure parameter, 
CN * 

The effect of the outer scale is shown quite dramatically.    The 
elevation angle of arrival, Ba(p)/<az> in Fig. 17 shows a slightly negative 
correlation for p » L0.    This negative correlation is sufficiently large 
that it is not believed to be an artifact of the computation.    Further 
showing the effect of outer scale, the azimuth angle of arrival correlation 
Bß(p)/<«'> shown in Fig. 18 falls below S% of the mean value for p = L0. 

The effects of range with a finite outer scale are shown in 
Figs. 21 and 22 where we see the normalized correlation functions 
plotted for an outer scale of 1 m, and inner scale of 1 mm and ranges 
of 304.8 m ft, 914.4 m ft and 1524 m ft.    Figures 23 and 24 contain the 
same information except with an inner scale of 1 cm.    It is noted that 
in these cases the outer scale dependence is almost entirely determined 
by the variation of the mean square arrival angle caused by the outer 
scale.   Thus, the correlation function is almost directly proportional 
to range. 

The proceeding graphs have all been for a plane wave.    The 
equivalent graphs are also presented for a spherical wave in Figs. 
25-34.   Thus Figs. 25 and 26 give the mean square arrival angle for 
two outer scales for 1 mm and 1 cm inner scales respectively.    Figures 
27 and 28 give the normalized arrival angle correlation functions for 
three ranges for an infinite outer scale and inner scale of 1 mm. 
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• (0 

■ I m 

•0.159 m 

L « 304.8 m 
Jto= 0.001 m 
PLANE   WAVE 
X = 10.6 M 

0.4 
4- 
0.5 

p (m) 

0.6 
±. 
0.7 0.8 0.9 

-ä 

Fig. 17. Small aperture elevation angle of arrival auto- 
correlation versus separation for plane wave 
input and three outer scales. 

i.o 

0.8 — 

0.9 
=6 
i.o 

Fig. 18. Small aperture azimuth angle of arrival auto- 
correlation versus separation for plane wave 
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Figures 29 and 30 give the same data except that the inner scale is 
1 cm. Figures 31 and 32 give the normalized arrival angle correlations 
for a 1 m outer scale and 1 rrro inner scale for the three different 
ranges and Figs, 33 and 34 hold for 1 m outer scale, 1 cm inner scale 
and the three different ranges. These were all computed the same as the 
plane v/ave data, except with Eq. (32) replacing (31). 

The accuracy of the computer evaluations of Eqs. (33)-(36) was 
checked by evaluating them for the case where L0 = «> and comparing with 
the closed form analytic expressions in Eqs. (38)-(40). Several orders 
of Gaussian quadrature integration were tried and compared to the 
closed form results as shown in Fig. 35. We see that the 96-point 
Gaussian quadrature integration used in the previous calculations provides 
good agreement. 

Extensive results are also available for the large aperture arrival 
angle variance. Figures 36 and 37 are plots of mean square arrivi'l angle 
normalized co turbulence structure parameter, C|\jS plotted as a function of 
aperture radius. The numbers were obtained by numerically integrating 
Eq. (19) with the expression in Eq. (33) used for <5|\|(K). In Fig. 36 
curves are shown for plane waves for an inner scale of 1 mm, a range of 
304.8 m ft and three values of outer scale. Figure 37 shows the effect 
of range for an outer scale of 1 m and an inner scale of 1 mm. These 
curves show changes with outer scale and range similar to the small 
aperture arrival angle correlation functions. 

Verifying the accuracy for these results is much more difficult 
and time consuming since four numeric integrations are used. However, 
increasing the order of integrations used yielded results which differed 
in the third and higher order digits. Thus, these results are believed 
to be accurate to 3 digits. Higher accuracy can be obtained by in- 
creasing the Gaussian integration orders. 

Further data is also available on large aperture mean square 
arrival angle, because, to a very good degree of approximation, the 
large aperture mean square arrival angle taken as a function of aperture 
radius, is equal to the small aperture azimuth arrival angle correlation 
function, Bn(p) taken as a function of point separation, p. This 
synonymity is discussed in detail in the next section. However the results 
are used here to indicate the further data on large aperture arrival 
angle mean square available. Thus the even numbered figures between 
Fig. 14 and Fig. 24 can all be retitled to give large aperture mean 
square angle of arrival versus radius for the particular case for 
plane waves, and the even numbered figures between Fig. 27 and Fig. 
34 can all be retitled to give the mean square arrival angle versus 
radius for the particular cases for spherical waves. Thus data is 
available for a large number of cases for the large aperture situation 
also. The discussion of the curves parallels that for the small aperture 
case. 
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n 
This concludes the presentation of data. Large and small aperture    »• 

angle of arrival data predicting experimental results have been 
calculated for a range of typical cases. The effects of range, inner 
and outer scales, separation and aperture size have all been demonstrated. 

Since all of the equations derived in this report are functions 
of Ds(p), the validity of these results depends on the validity of 
the Rytov approximation. This topic will now be briefly considered. 
The question has been the subject of many discussions[18-26] and the 
criterion which seems appropriate at this time to the calculations in 
this report is Ds(p) « TT. This result was reached by Tatarski from 
calculations of the second order term of Mp).[18] A similar result 
was also reached by DeWoif.[19] To quantify this result we consider 
p much greater than !i0 and set [5,(47.37)] 

(44)      Ds(p) = 2.92 CN
2 k2 p5/3 L « IT. 

For convenience, replace the "much less than TT" with TT/IO.    Thus, we 
can write Eq. (44) as 

I, 
/ \3/5 

(45) P-M-T" (CN
2L)"3/5. 

\29.2k^   / N 

This is shown plotted in Fig. 38. 

In Fig. 38 several range, C^L, combinations are shown.    We see 
that for the longest range used earlier, 1524 m and for strong 
turbulence C^2 = 10"'4 m"2'3, the maximum permissible separation, p, 
is approximately 9.2 cm.    This means that the angle of arrival two-point 
correlation is valid for p < 9.2 cm and the large aperture results are 
valid for R < 9.2 cm.    As the range and turbulence levels decrease we 
note that the restrictions are relaxed. 

It should also be noted that the form used for Ds(p) does not 
include saturation effects due to the outer scale.    Since the validity 
criterion was derived independently of the exact form of the refractive 
index fluctuations saturation effects may extend the region of validity. 
Furthermore, it has been suggested the region of validity may be larger 
than calculated.[5],[27]   Measurements by Bouricius and Clifford at 
.632y[27] suggest this result and indicate that more study is required. 
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To summarize the work presented in this section, data were 
presented predicting results of various angle of arrival experiments 
for various conditions.    First the formulae to be used for the phase 
structure function and refractive index turbulence spectra were pre- 
sented.    Then expressions given in previous sections for small aperture 
arrival correlation functions were evaluated, and plotted.    For 
infinite outer scale the expressions could be written as closed form 
expressions, for finite outer scale they had to be evaluated numerically. 
Both elevation and azimuth angle correlation functions, respectively 
B (p) and Bg(p), were calculated and graphed for plane waves for ranges 
304.8 m, 914.4 m and 1524 m, outer scales of infinity, 1 m and 0.159 m, 
and inner scales of 0.001 m and 0.01 m.   This data was then repeated 
for spherical waves.   The large aperture mean square arrival angle was 
also evaluated from a previously presented formula.   Only a few cases 
were evaluated because of a synonymity which allowed the small aperture 
azimuth arrival angle correlation curves as a function of separation, p, 
to be relabled with large aperture mean square arrival angle as a 
function of aperture radius, R, thus allowing many of the results to 
serve double duty.   The section was concluded with a discussion of the 
Rytov approximation on which the phase structure function was based. 

VI.        ANGLE OF ARRIVAL SYNONYMITY 

This section deal? explicitly with a relationship between the 
angle of arrival variance for large aperture receiver as a function 
of aperture radius, R, and the small aperture azimuth correlation 
function, Bg^) taken as a function of p.   The particular relationship 
is that they are synonymous over a sizable range of values of the argument. 
These two situations are shown in Fig. 39 to facilitate the comparison 
between the two.    Figure 39a shows a standard large aperture arrival 
angle measurement situation.    An atmospherically degraded beam from 
a point source is focussed to a degraded spot.   The information about 
angle of arrival is obtained from the transverse motion of the spot, 
the arrival angle being proportional to the spot displacement. 
Figure 39b shows a possible situation for the measurement of small 
aperture arrival angle correlation function.   The angles of arrival 
at two pinholes are determined independently by monitoring the two 
pinhole diffraction patterns, the motion of the center of each pattern 
being proportional to the individual arrival angle.    In the case at 
hand, only the x component of motion is of interest.   The pinholes are 
sufficiently small that the amplitude is constant over the hole.   Then 
the quantity of interest is the correlation of arrival angles between 
these two pinholes, the correlation being a function of p, the separation 
of the pinholes.    In the case of interest the pinholes are separated in 
the direction perpendicular to the direction in which the spot motion 
is being monitored, (the x direction in Fig. 39). 
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Fig. 39. Comparison of the definitions of the large aperture 
mean square angle of arrival and the small aperture 
angle of arrival correlation. 
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f 
Comparing Eqs. (46) and (47) we see that both expressions can be     » 

written in the form 

(48)     4^1. / T(K) F(K) *N(K) K
3
 CIK 

where T(K) is the filter function peculiar to the particular operation, 
F(K) identifies the type of wave, and *^(K) is the refractive index 
turbulence spectrum.    Denoting the particular small and large aperture 
filter functions by SA(KP) and LA(KR) respectively, we have 

(49) SA(KP) = ^M/icp 

R R TT   

(50) LA(KR) = - (IG/TTR^2) j r2 dr j p2 dp f cos y [l-J0(iolrZ+pZ-2rpcos y)^] 

0      0      0 

[ 
Equations (49) and (50) describe the manner in which the receiving 
aperture interprets the angle of arrival. Graphs of these functions        ,. 
are shown in Fig. 41. For convenience in comparison we shall take 
them both to be functions of the same variable to be called R. We 
see in this figure that the two filter functions are synonymous over 
a wide range of KR. 

The synonymity is limited with respect to the range of the variable 
R over which it applies. This occurs because of the relative size n 
of the filter function and the other functions, F(<),*N(K:) K3 in the 
frequency integral. If the other functions are of significant size 
only when the filter functions are almost identical, i.e., in the 
region, 0 <KR<4, then the identity will hold. If the other functions 
have large contributions for KR>4 then the synonymity will break down.      ^ 

To more quantitatively define the regions of applicability for the 
angle of arrival synonymity we define e(R), the error between the two 
functions relative to the small aperture correlation function, 

Bft(R) - <a 2> 
(51)     e(R)-->6  Bg(ft)

X    . 
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The numerator of Eq. (51) is given by an integral, I(){KR) of the 
difference between Eqs. (46) and (47). Using the difference function 
A(KR) given in Eq. (52) and shown in Fig. 42, 

(52)      A(KR) = SA(<R) - LA(KR) 

; 
the numerator integral is 

(53) 

: 

ID(KR)  = 4A | A(KR)  FS(K)  *N(K) <3 die. ( 

0 

I 
For a plane wave, FS(K) varies between 1 and 2 and has little effect, 
thus, making A(KR) and K^ $ (K) the two functions of most interest. 

We now proceed to examine e(R) qualitatively, but in some detail 
to determine the approximate functional dependence.   This is to be 
done by examining the curves for SA(icR), LA(KR), A(KR), and K^ ♦«(<) 
and the various ways they can combine for various values of R.    These 
curves are plotted quite precisely in Figs. 41, 42, and 43, using for 
$N(IC) the Von Karman spectrum given in Eq. (33).    The various functions 
are compared in Fig. 44 for several values of R.    The effect of 
choosing various values of R is to select particular horizontal scales 
for the filter functions SA(<R), LA(KR) and A(KR).    Thus, as seen 
in Fig. 41, LA(<R) goes essentially to zero at K = 4.4/R and SA(<R) 
has its first zero at K ■ 3.9/R.    Fig. 42 shows that the difference 
function, A(KR) has its first zero at < = 3.4/R, pretty much in the 
same region.    Examining curves in Fig. 44a and we see that for 
R « i0 the small and large aperture filter functions are nearly 
constant over the complete range of K^ ^(K) SO that Bg(R) and <ax2(R)> 
are identical, each being given by that integral over «3 $«(<).    For L 
R ■ 4.4/£0, comparing Figs. 44a and 44c, we see that both LA(KR) and 
SA(KR) go to zero at about the same place that K3 *M(K) becomes very i 
small.    For that case both curves are finite over the range 0-1/L0, 
the product at any point being less than the value of either curve. 
The integral over the product is then starting to decrease.    This is 
the region of R where the curves of Bg(p) and <ax

z(R)> start to 
decrease, as shown on graphs of these functions.    Further the value L 
of the error j A(ICR) K3 ^(K) ^K has been increasing with R 
and has possibly a local maximum because A(KR) has a negative portion 
where K3 «^(K) is still finite. 

i. 
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For 
that A(KR) 
region of « 

Jhe region of L0, comparing Figs. 44a and 44d shows R in 
and K3 $N(K) both have large positive portions in the 
-  1/L0. One would expect a local maximum in the error 

"egi 

around this region. As R increases slightly past L0, the first zero 
of the A(KR) curve approximately coincides with the peak of the 
K3 $N(K) curve so that the product is positive for K<1/L0 and negative 
for K > l/L0. One would expect the error to decrease for this region of 
R. Finally as R becomes still larger, the error curve will oscillate. 
This expected qualitative behavior is sketched in Fig. 45. 

a 

Fig. 45.    Integrated large and small aperture angle 
of arrival difference function. 

relative error, e, defined in Eq. (51). 
< L0 the product of LA(KR) and 
limited for small K by K3 tN(i 

In Eq. (51) is relatively sma 
K) and 

I and 

One can further examine the 
In particular for the case where R 
K    *N(K) becomes quite small, being 
large ie by LA(KR).    Then <ax

2(R4 

e(R) approaches unity.    Thus the assymptotic value of|e(R)lis 1.00, 
i.e., 100% error.    The expected qualitative behavior for e(R) is then 
plotted using the data on A((CR), SA(KR) and the assymptotic value.   The 
plot is given in Fig. 46. 

for 
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Fig. 46. Angle of arrival synonymity error function 
showing asymptotic behavior. 

These qualitative results are confirmed by the quantitative 
numeric evaluation in Eq. (53), (including FS(K)) shown in Fig. 47. 
These numeric calculations required considerab 
only enough points were calculated to show the 
Thus, some oscillations have more than likely 
final value of e(R) was not reached. Accuracy 
was difficult to obtain, however, the results 
to at least order of magnitude and demonstrate 
earlier. 

le computation time so 
nature of the curves. 

been suppressed and the 
in these calculations 

ar^ certainly correct 
the behavior predicted 

Three cases 
calculations. The 
fairly small for R 
less than twice the 

are shown in Fig. 47 corresponding to earlier 
first characteristic we note is that e(R) is 
< L0. This implies that for aperture diameters 
outer scale, the large aperture mean square 

angle of arrival can be approximated by the small aperture azimuth 
correlation function. From Fig. 47 we see that this error will be 
on the order of 10%. Second, we note the range has very little 
effect as is to be expected. What effect the range, L, does have is 
incorporated in FS(K). 

To sumnarize, in this section, we have stated that the large 
aperture angle of arrival mean rquare value and the small aperture 
azimuthal angle of arrival correlation function are synonymous. The 
functional dependence was demonstrated to be very nearly equal for 
typical cases. The relationship was examined in the spectral domain 
both qualitatively and quantitatively showing that the results should 
be expected to be well within ten percent for values of the argument 
up to the outer scale. 
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Fig. 47.   Angle of arrival synonymity error function for two 
outer scales and two ranges. 
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VII.  SUMMARY 

In this report the subject of angle of arrival of light beams 
degraded by propagation through atmospheric turbulence has been 
considered. Data on arrival angle experiments was calculated for two 
types of experiments for a wide variety of cases and an equivalence 
between two types of angle of arrival experiments was demonstrated. In 
Chapter II the subject was introduced and reviewed, and the literature 
enumerated. It was pointed out that there were two approaches to 
angle of arrival considerations, one using a pair of pinhole apertures 
and the other using a single large aperture. In Chapter III the 
area of small aperture angle of arrival calculations was reviewed in 
detail, the basic theoretical expressions being derived. The calculation 
of large aperture angle of arrival was discussed in Chapter IV. In 
Chapter V the analytic expressions derived in Chapters III and IV were 
evaluated using a particular expression for the refractive index spatial 
spectrum, namely the Von Karman spectrum. The results were presented 
graphically for the two angle of arrival situations for variety of cases 
Including various Inner and outer scales. The Rytov approximation used 
In the derivation of the phase structure function used was considered 
and a graph given showing the expected range of validity the calculations. 
In Chapter VI a synonymity was presented between the large aperture 
angle of arrival mean square value expressed as a function of aperture 
radius and the small apsrture azimuth angle of arrival correlation 
function taken as a function of aperture separation. This synonymity 
v.cs used in Chapter V to simplify calculations and also offers the 
possibility of simplification of experimental measurements. The 
limitations on the synonymity were demonstrated. 
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APPENDIX A 
DISCUSSION OF REFRACTIVE INDEX FLUCTUATION SPECTRA 

Various forms of the refractive index fluctuation spectra 
have been used to find solutions of the wave equation for an inhomo- 
geneous random media. Two forms which have been used recently are 
compared in this appendix. The choice of one of the constants is 
explained and several interesting characteristics noted. The 
derivations of these spectra are not presented since they are outside 
the scope of this report. 

Kolmogorov theory predicts that the refractive index structure 
functions should have the following asymptotic behavior 

(Al)     DN(r) =<! 

C2  A2'3   (r  )2 CNÄo     <*o> 
0 < r « £ 

C2 r2/3 I    « r « L 
0                       0 

where 

i   ■ inner scale of turbulence o 

L. = outer scale of turbulence o 
2 

C» = structure constant of the turbulence. 

It can be shown that the Kolmogorov spectrum as used by Tatarski in [5] 
and given in Eq.  (A2) 

2   2 
K /«:     -11/3 

(A2) iN (<) = .033 C2 e       '   m    < 

5.92 
m       £0 

K_   ~ 

has a structure function of the form 
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- K2 r2 

(A3)      DN(r) = 1.67 C2 K^3
 [^  (- 1. |. -\~ ) -  1] 

where iF] signifies a confluent hypergeometric function. Further, 
it can be shown the confluent hypergeometric function has the proper 
asymptotic behavior such that Eq. (Al) is satisfied. 

Another form of \{K)  is the Von Kannann spectrum which includes 
outer and inner scale effects. Several algebraic forms have been used 
but they can be generalized to 

2. 2 
n      ~ K / K 

.033 Cjj e    m 

(A4)     *HM  = ""72^ 2.11/6 
{<      + Kn) 

with 

Ko" r 

where A is a normalization constant. The value of A has been chosen 
as 1 in [17] and 2ir in [28]. For L = », Eq. (A4) reduces to Eq. (A3) as 
expected. 

The value of A used in this report is 1. The reason for this 
choice will now be explained. We note that when A s 2ir, the effect is 
to normalize L to a new value L' such that o o 

L 

(«'      K'-£- 

The physical interpretation of L0 is that it is a characteristic 
dimension of saturation effects. To examine this situation the refractive 
index spectrum and structure function calculated from Eq. (A3) and Eq. (A4) 
and the resulting phase structure function are shown in Figs. Al-A3 re- 
spectively. Dashed lines have been added at p = 1/K = L for L_ ■ 1 
and L' = l/2Tr. 0    0 

o 

Two interesting characteristics are noted. First, all of 
the curves tend to saturate at a value predicted approximately by 
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the Kolmogorov spectrum at p = 1/K = LQ. Secondly, the break point of 
the saturation occurs at the same point. These two characteristics 
are consistent with the original definition of the outer scale, L0, 
and the use of A * tir merely clouds the issue. Thus, for this report 
A is chosen to be one. 

Another interesting characteristic is seen in Fig. A3. The 
slope of the phase structure function in the inertial subrange is not 
unique. Since the effect of the outer scale is to cause saturation 
the slope must change continuously from that of square law to zero. 
Only for the special case of L0 = » is the slope a constant. There- 
fore, the outer scale makes it difficult to predict a unique slope of 
the phase structure function in the inertial subrange. 

Concluding, two refractive index fluctuation spectra have been 
described and the criteria used to determine one of the constants 
explained. Several interesting characteristics were demonstrated. 
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APPENDIX B 
COMPUTER PROGRAM USED FOR NUMERIC CALCULATIONS 

The computer programs used for numeric calculations in this 
report are presented in this appendix. Each program will be described 
briefly and data input explained. A listing of the source deck is 
also presented. All programs were written for use on an IBM 360/75 
computer in FORTRAN IV(G). Some subroutines are contained in the IBM 
Scientific Subroutine Package (360-CM-03X) Version III. 

1.   Small Aperture Angle of Arrival Calculations 

Three programs were written to make the small aperture calcu- 
lations. The first program evaluates the analytic functions for the 
angle of arrival mean square and 2 pt. correlation function, using the 
Kolmogorov spectrum and plane wave input. The second program 
evaluates the integral expressions using the Von Karmann spectrum and 
plane wave input. The third program evaluates the integral expressions 
for spherical wave input. These programs also calculate the refractive 
index fluctuation spectrum and structure function, the phase structure 
function and the wave structure function. Each program has numerous 
comment cards to describe the program flow and the variable names 
correspond closely to variables used in the report. 

(a). The computer program used to calculate the angle of 
arrival correlation functions for the Kolmogorov spectrum is shown in 
listing (31). It evaluates the confluent hypergeometrie functions for 
pure real or pure imaginary arguments using formulae taken from Tables 
of Functions, Jahnke and Emde. 

The first card in the input data specifies the parameters, Jl0, 
L, and x. The variables are punched into ten column fields in 
decimal form. They are: 

Columns 

1-10 XLO = £ , the inner scale of the turbulence in meters 
11-20 XL = L, the range in meters 
21-30 XLAMB = x, the wavelength in meters. 

If XL = 0, execution is terminated.    The following card specifies 
the starting point, increment, and number of increments for the separ- 
ation distance.    These variables are: 
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I 
I 
I 

I 

LISTING B-l 

C *♦** 10.6 PROPAGATION PHENOMENON PROGRAM **** 
C ***** SMALL APERTURE ANGLE OF ARRIVAL CALCULATION FOR 
C       THE KOLMOGOROV SPECTRUM ***** 
C 
(COMPLEX  GtGD 

REAL*8   R0YP2tXDYP2tRÜYP3tX0YP3,Bi.B2 
C   INITIALIZE   NORMALIZATION  CONSTANTS 

BANOKM»!. 
IBBNORNsl. 

BAGORM»!. 
BBGORM«!« 

iC  READ  DATA 
2&       REAOI5,9ÜO»XLO,XL»XLAMB 

IFULO.EQ.O.ICALL   EXIT 
150       REAÜ(5»900)RH0Sf0ELRHtXNR 

IF(XNR.EQ.O.)GQ  TO  25 
900     F0RMATI3E10.3) 

WRITE(6f100ll 
1001 FORMAT(«1*1 

C CALCULATE  CONSTANTS 
XK«6.2821/XLAMB 
XKMs5.94/XL0 
0«XKM**2*XL/XK 
NR»XNR>1 
A1«U0B8*XL*XKM**. 333333 
A2«ü**(-.16666671 
A3»D**(-1.166667 I 
Bl»0C0S(3.l^l$927/12.) 
B2»DSIN(3.I41$927/12.I 
WRITE«6ff1002IXKvXKMtü 

1002 FORMATI/«   XK=   • t lPE10.3t5Xt "XKM*   • f El0.3t 5X« «D«   SEIO^) 
C  BEGIN   ITERATION ON RHQ 

00   100   1=1,NR 
RH0»RH0S4-ÜELRH*FL0AT (1*11 
G«XKM**2*RH0**2/4. 
XG0«(RH0«*2*XKI/(4.*XL» 
GD«f0.tl.)*XGO 

C BRANCH TO ASYMPTOTIC CALCULATION 
IF(XGD.GT.100.)G0 TO 75 

C 
C SMALL RHO FORMULATION 
C 
C CALCULATE CONFLUENT HYPERGEOMETRIC FUNCTIONS 

CALL HYPERG(.1666t2.,-G,RHYPl9XHYPl) 
CALL  DHYPER(-.8333V2.*6D»R0YP2,X0YP2) 

C  PRINT  VALUES  OF  CONFLUENT  HYPERGEOMETRIC 
WRITE(6,1003»RHYPl,XHYPl,RDYP2fX0YP2 

1003 F0RMAT(4CE10.3V5X») 
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CALCULATE BETA CORAELATION 
aBETA>Al*(.834«RHYPl4(A2*(  Bl*ROYP2+  B2*XOYP2)n 

CALCULATE CONFLUENT HYPERGEOMETRIC FUNCTIONS 
CALL HYPERGl1.1666« 3.,-G.RHYP2,XHYP2» 
CALL OHYPER(.16667v3.»GDtROYP3fX0YP3) 

PRINT VALUES OF CONFLUENT HYPERGEOMETRIC 
NRITEI6,L003)RHYP2fXHYP2fROYP3tXOYP3 

CALCULATE ALPHA CORRELATION 
BALPHA=BBETA-.2260*RHO**2*XL*XKM**2.333*(.l66667*RHYP2*A3*( 
1P3*B2*RDYP3)) 
GO TO 60 

75       CONTINUE 

■B.l*XO^ 

C ASYMPTOTIC FORMULATION FOR LARGE RHO 
C 

CALL HYPERG(.1666,2.•-6,RHYP1,XHYP1) 
BBETA =I.8l«XL*XKM**.3333*RHYPl 
CALL HYPERGa.l666f3.»-GtRHYP2,XHYP2) 
BALPHA>BBETA -l.ai*XL*XKM**2.i3333»RH0**2/24.*RHYP2 

60   CONTINUE 
C NORMALIZE TO MEAN SQUARE ANGLE OF ARRIVAL 

BBN«BBETA/BBNORM 
BAN«BALPHA/BANORM 

C PRINT RESULTS 
WRITE(6,1000)RHO,BBETA.BALPHA 
WRITEUtlOOA) 

1004 FORMAT(T65,•CORRELATION NORMALIZED TO MEAN SQUARE VALUE • 
WRITE(6*1000)RHOtBBNfBAN 
IFIRHO.NE.O.)G0 TO 100 
BBNORM»BBETA 
BANORM«BALPHA 
BBGORM>BBETAG 
BAGORM»BALPHG 

100     CONTINUE 
1000  FORHAT(T65,*RH0-l,lPE10.3,5X,*BBETA«*fEI0.3,$Xf«BALPHA*   • 

GO  TO  50 
END 

) 

,E10.3) 

86 



SUBROUTINE OHYPERULPHAf GAMMAtCZ»RHYPt IHYP ) 
C 
C THIS SUBROUTINE CALCULATES THE CONFLUENT HYPERGEOMETRIC FUNCTION 
C ARGUMENTS ARE ALPHA,GAMMA, AND CZ. RESULT IS IRHYP,IHYP) (COMPLEX) 
C C2 IS ASSUMED TO BE PURE IMAGINARY 
C 

IMPLICIT COMPLEX(C),REALMS (A-B,D-ItO-Z) 
REAL*4 ALPHA,GAMMA,ARGZ,ARZG,A,B,BMA,SIGN,Z 
C0MPLEX*16 CDZtCRSUM,CSSUM,CRTERM,CSTERMfCF,DCONJG 
INTEGER I 
ARG(CZZ)=ATAN2CAIMA6(CZZ),REAL(CZ2)» 

1000 FORMATCONO CONVERGENCE*/* CHYP«* ,2( 1PE10.3,2X ) , 5X, «CHYPU« • ,2 (E10. 
13f2X)) 

1001 FORMAT!* I« *,15,5X,* ALPHA* *,F10.5,5X,»GAMMA« * ,F10.5,3X,*CZ> **2 
l(lPE10.3,2X),3X,aRHYP« •,E10.3,5X,*IHYP« *,E10.3) 
ARGZ«ARG(CZ) 

C 
C SMALL ARGUMENT EXPANSION 
C 
C SET UPPER LIMIT ON THE NUMBER OF TERNS 

LMT-200 
100  I«2 

C 
C CALCULATE REAL PART 
C 

RHYP«1. 
IHYP«0. 
Z'AIMAGICZ) 

C TEST FOR ZERO 
IF! ABSm.LT.l.E-30)RETURN 

C TEST FOR LARGE ARGUMENT 
lF(ABS(AIMAG(CZn.GT.3.)G0 TO 500 
RHYP0«ALPHA/GAMMA*Z*(ALPHA+l.)/(GAMMA*l.)*Z/2.*(-l.) 
SRHYP«RHYPO 

120     I»I+2 
C CHECK  NUMBER  OF   TERMS 

IFd.GT.LMTIGO TO   140 
K«I-1 
RHYP*-RHYPO*IALPHA+K-l.)/IGAMMA*K-l.l*Z/FLOAT(r-l)*(ALPHA*K)/<GAMM 

1A>K)*Z/FL0AT(I) 
SRHYP*SRHYP*RHYP 

C TEST FOR CONVERGENCE 
IF(0ABS(RHYP-RHYPO).LT.l.E-05)GO TO 130 
RHYPO*RHYP 
GO TO 120 

C WRITE ERROR MESSAGE 
140  MRITE(6V1000)RHYPVRHYPO,CHYPO 

WRITE(6fl001)I,ALPHA,GAMMA,CZtRHYP,IHYP 
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130      IHYPÜ»0. 
C 
C   CALCULATE   IMAGINARY   PART 
C 

RHYP=SRHYP*l. 
1*1 
1HYPO«ALPHA/GAMMA^Z 
S1HYP=IHYP0 

220      1=1*2 
C   CHECK   NUMBER   OF   TERMS 

IF« I.GT.LHHGÜ  TO 240 
IHYP=-lHYPO*CALPHA*K-l.)/(GAMMA+K-l.)*Z/FLOAT(I-l)*(ALPHA*K)/(GAMK 

lA4-K)«Z/FL0ATCn 
SIHYP=IHYP*SIHYP 

C TEST FOR CONVERGENCE 
IF(UABSCIHYP-IHYP0).LT.1.E-05)G0 TO 230 
IHYPO«IHYP 
GO TO 220 

C WRITE ERROR MESSAGE 
240  WRITElötiOOOMHYPf IHYPOtCHYPO 

WRITE(6,l00lHf ALPHA,GAMMAtCZfRHYP,IHYP 
230  IHYP»SIHYP 

RETURN 
500  CONTINUE 

C 
C ASYMPTOTIC EXPANSION FOR LARGE ARGUMENT 
C 

coz«cz 
CRSUM=I. 
CSSUM>1. 
CRTERM>1. 
CSTERM>1. 

C  SET  UPPER   LIMIT   ON  THE  NUMBER  OF  TERMS 
LMT»5 
IFUBSm.GT.   20.)LMT«l 
DO  600   1=1,LMT 
K«I-l 
CRTERM=(ALPHA+K)*(ALPHA'-GAMMA*l.*KJ/CFLOArCII*(-CDZn*CRTERM 
CRSUM=CPSUM*CRTERM 
CSTERM=(GAHMA-ALPHA*K)*(l.-ALPHA+K)/(FLOATm*CDZ)*CSTERM 
CSSUM'CSSUM+CSTERM 

600     CONTINUE 
SIGN««-!. 
IFIAIMAG(CZ).LE.0.)SIGN«-1. 
CALL   GAMMB(ALPHA,GAMMA,A,B,BMA) 
ARGZ=3.141592/2. 
CF=C0ABS(CDZI**(-ALPHA)*CEXP((0.,1.)*ALPHA*SIGN*ARGZ)/BMA»CRSUM 
lFIA6Sm.GT.20.)G0  TO  650 
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CF'CF* CABSfCZ )"(ALPHA-GAMMA )*CEXPno*fl.)*f ALPHA-GAMMA )*ARGZK;Z) 
1/A*CSSUM 

650 CONTINUE 
CF-CF*B 
RHYP».5*C0C0NJGICF)+CF) 
IHYP»(0.,.5I*IDC0NJG(CF)-CF) 
RETURN 
END 
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SUBROUTINE HYPERGCALPHA,GAMMA,CZtRHYPtIHYP) 1 
C 
C THIS SUBROUTINE CALCULATES THE CONFLUENT HYPERGEOMETRIC FUNCTION    T 
C ARGUMENTS ARE ALPHA,GAMMA, AND CZ. RESULT IS !RHYP,IHYP) (COMPLEX) 
C CZ IS ASSUMED TO BE PURE REAL 
C 

IMPLICIT COMPLEX (C) 
RFAL 1HYPVIHYP0 I 
ARG(CZZ)>ATAN2(AIMAG(C22),REAL(CZZII 

C SET UPPER LIMIT ON NUMBER OF TERMS [ 
LMT=500 
ARZG«ARG(-CZ) 
ARGZ=ARG(CZ) r 

1000 FORMAT!'ONC CONVERGENCE*/* CHYP«*,2CIPE10.3,2X),5Xf*CHYPO=*,2(ElO 
13,2X)) l 

10Ü1 FORMAT!* I' *,15,5X,* ALPHA« *,F10.5,5X,*GAMNA« *,F10.5,5X,*CZ* *,2 
l(lPE10.3«2X)v3X,

aRHYP- •,E10.3,5X,*IHYP« *,E10.3) 
300  CHYP0=(1.,0.) 1 

l«l 
Z»REAL(CZ) 

C TEST FOR LARGE ARGUMENT 
IF(CABS(CZ).GT.3.)G0 TO 500 

C 
C   SMALL   ARGUMENT   EXPANSION 
C 

IHYP*0. 
RHYPO<ALPHA/GAMMA*Z 
SRHYPaRHYPO 

320  1=1*1 
C CHECK NUMBER OF TERMS 

IF(I.GT.LMT)GO TO 340 
K = I-1 
RHYP»RHYPO*(ALPHA+K)/(GAMMA+K)*Z/FLOAT(I) 
SRHYPaSRHYP*RHYP 

C TEST FOR CONVERGENCE 
IFIABS(RHYP-RHYP0».LT.l.E-05>G0 TO 330 
RHYPO=RHYP 
GO TO 320 

C WRITE ERROR MESSAGE 
340  WRITE(6,1000)RHYP,RHYP0,CHYP0 ,• 

WRITE(6,1001U,ALPHA,GAMMA,CZ.RHYP, IHYP 
330  RHYP»SRHYP-»-l, 

RETURN 
500  CONTINUE 

C 
C ASYMPTOTIC EXPANSION FOR LARGE ARGUMENT 
C 

RSUM>1. 
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SSÜM«1. 
RTERMO«*!. 
STERMO«!. 
CALL GAMMB(ALPHAtGAMMA9AvBtBMA) 

C SET UPPER LIMIT ON NUMBER OF TERMS 
LMT>5 
00 600 I-ltLMT 
K«I-l 
RTERM«(ALPHA«K)*(ALPHA-GAMMA^l4K)/(FL0AT(n*( -Z))*RTERM0 
RSUM«RSUM^RTERM 
RTERMO«RTERM 
STERM«IGAMMA-ALPHA*K»*I1.-ALPHA+K)/(FL0ATCI)* Z)*STERMO 
SSUM*SSUM+STERM 
STERMO-STERM 

600  CONTINUE 
CF»CABSfCZ)**(-ALPHA)*CEXP(f0.fl.)*(-ALPHA)*ARZG)/BMA*RSUH 
IF(CABS(CZ).GT.99.)G0 TO 700 
CF«CF+CABS(CZ)**(ALPHA-GAMMA)*CEXP((0.tla)*(ALPHA-GAMNA)*ARGZ+CZ)/ 
1A*SSUM 

700 CONTINUE 
RHYP«REAL1CF)*B 
IHYP*AIMAG(CF)*B 
RETURN 
END 

SUBROUTINE  GAMMB(AvBtAl.Bl.BMA) 
C 
C  THIS  SUBROUTINE CALCULATES  GAMMA  FUNCTIONS FOR  CONFLUENT HYPERGE0METR1C 
C  FUNCTION'S  LARGE EXPANSIONS 
C 

B1»GAMMA(B) 
IF(A.GT.B)GO TO 200 
BMA«GAMMA(B-A) 

150 CONTINUE 
1F(A.LT.0.)G0 TO 100 
A1«6AMMA(A) 
RETURN 

100  Al»-3. 141592/(GAMMA(-A+l.)*SIN(-3a4139*An 
RETURN 

200  BMA»-3. 141592/IGAMMA(A«B^l.)*SIN(3.141592*(A-Bn) 
GO TO 150 
END 
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Columns 

1-10 RHOS = the first value of p 
11-20 DELRH = the increment of p 
21-30 XNR = the total number of increments. 

Again the variables are punched in ten column fields in decimal form. 
If XNR = 0, then the program reads a new parameter card. 

(b).    The Von Karmann spectrum calculations of the mean square 
angle of arrival, two point correlation functions, and structure 
functions mentioned earlier are performed by numerical integration.   The 
programs for both plane and spherical wave input are shown in listings 
(B-2) and (B-3), respectively.   The integrations are performed by 
using a 96 point Gaussian quadrature algorithm.   The Bessel functions 
were evaluated using a polynomial expansion from Handbook of Mathematical 
Functions by Abramowitz and Stegun. 

The weighting factors and arguments for the Gaussian inte- 
gration are read as input data and are shown in listing (B-4).    All 
user input data should follow these cards.   Since both programs use 
the same input data only one data deck will be explained. 

The first user input data card specifies the parameters for 
the angle of arrival correlation function calculation.   The data is 
again punched in ten column fields in decimal form.   The input variables 
are: 

Columns 

1-10 XLG ■ ä0, the inner scale in meters 
11-20 XL = L, the range in meters 
21-30 XLAMB = x, the wavelength in meters 
31-40 XCAPLO ■ L0, the outer scale in meters 
41-50 A = A, the outer scale normalizing constant. 

If XL = 0, the correlation function calculations are terminated and the 
program begins the structure function calculations. 

Otherwise, the program reads the separation parameters: starting 
value, increment, and total number of increments.   These variables are 
punched in ten column fields in decimal form.   They are 
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LISTING B-2 

C ♦♦♦♦ IC.6 NICKCN PRUPAGAriCN PHfcNOMtNA PROGRAM ♦♦♦♦ 
C ***** ANGLE GF ARRIVAL ANU RELATFO STRUCTURE FUNCTION CALCULATION 
C       FLR THt VON KARMANN SPECTRUHt AND PLANE INPUT ***** 

EXTERNAL FCTfFCIOfFCIltFCT2,FCI3 
KCAL*b YINT,YlNTGtFCTfYLtXUtYINTl«YlNT2fXKAP 
COMMON RHO»XLtXK«XKMvXKO 
COMMON /INTG/TEST 
CALL GAUbZ 
TfST=G. 

C READ INPUT DATA 
lüC  REAU(5,900)XLCtXLfXLAMBvXCAPLÜtA 
900     FÜRMATI^blO.B) 

IF(XL.L-C.O.)GC TO 201 
C CALCULATE CONSTANTS 

XKM»*>.94/XL0 
XKC-A/XCAPLO 
PI = 3.M15927 
XK-6.2Ö3184/XLAMB 

C READ ARGUMENT VALUES 
ISO  KEACC5f9C0lRH0S,CELRH0,XNR 

1F(XNR.EC.0.)GG TG lüO 
C CALCULATE ANGLE OF ARRIVAL CORRELATION 

NR-XNR 
WKITE(6*1002) 

1002 FGRMAT(*lANGLb OF ARRIVAL CORRELATION FUNCTION ■) 
WRITE(6»100i)XLtXL0tXCAPLÜ.A,XLAMB 

lüOb FORMAT!1 RANGE*»,IPE11.3,• M».bX,•INNER SCALE« ,,E10.3«1 M«,5X, 
I'OUTER SCALE* ••E10«3«1 MSSX.'A* • ,fclO. 3,5X, »LAMBDA* ••E10.3»» M' 
2) 
00 200 1*1,NR 
RHC*RHCS*OELRHC*FLtAT(I-l) 

C ELEVATION ANGLE OF ARRIVAL CORRELATION 
CALL INTGRL(0.V1.E-3,B,FCT,YINT) 
BALPHA=2.*PI**2*XL*YINT 
IF(RHO.EC.C.)BAN*BALPHA 
BALPHN*BALPHA/BAN 
WRlTE(6,l0C0JRhO,BALPHA,BALPHN 

1000 FORMATCORHO* » , lPEL0.3,*iX, »BALPHA* • ,E10.3,5X, »BALFHAN* »,E10.3) 
C AZIMUTH ANGLE OF ARRIVAL CORRELATION 

CALL INTGRL(ü.,L.b-3,8,FCT0,YINT) 
BBETA=2.*PI**2*XL*YINT 
IF(RHO.EU.C.)BBN*BBETA 
BBETAN*BBETA/ß8N 

10U1 FQRMAT(2LX,*bOETA*  ,,lPEl0.3,t>X »BBETAN*  »,E10.3) 
200  K«ITE(6,l00nBeETA,BBETAN 

GO TO 150 
C CALCULATE STRUCTURE FUNCTIONS 
C READ INPUT DATA 
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201      »UAlJt'jf9C0>XLIJ,XL.XLAHß,XCAPLÜ.A 
IF{XL.eü.O.)CALL   EXIT 

C   CALCULAIE   CCNSTANfS 
XK=6.^b3l^Ö«/XLAMb 
XK^ = 'j.y^/XLO 
XKC=A/XCA»»LÜ 
WKITH6»1003) 

1003   hORNATinSTRUCTURE   FUNCTIONS   AND   SPECTRA   •) 
WKIrE(o,lÜ05)XL»XL0.XCAPL0fA,XLAMB 

0 
l 

i 
C   KtÄü   ARGUHENT   VALl ES f] 

^30     READ(5v900)RtlÜStCELRHCtXNR 
IFUNK.Et.OGC   TO   201 
NH=XNK+l. r 

I 

Ü0 220 1=1,NR 
RHC=RHCS*ÜFLRHC*FLtAr(I-l) 
XKAPsRHÜ ri 

C KEFRACflVE INDEX FLUCTUATION SPFCTRUM 
PHIK=PHlEPS(XKAP,XKMtXK0) 

C REFRACTIVE INDEX FLUCTUATION STRUCTURE FUNCTION 
CALL INTüRL(l.E-03fl.E-02,8,FCTl,YINTi» 
DN=Ö.*PI*YINT1 

C PHASE STRUCTURE FUNCTION 
CALL INTGRL(l,E-02,I.0E-0l,6.FCT2.YINT2) 11 
US=A.*PI**2*XK**2*XL*YINT2 [J 

C WAVE STRUCTURE FUNCTION 
CALL INTGRLa.E-03,l.E-02,7,FCT3fYINT2» r 
DSW=8.*PI**2*XK**2*XL*YINT2 

220  WRITEI&t1004)RHO»PHIK,ON»OS«DSW U 

IGOA FORMATI'OARGUMENT* • 11PE10.3,/, • REFRACTIVE INDEX FLUCTUATUION SPE 
ICTRUM= '.ElO^.^X,«STRUCTURE FUNCTION« SElCif/t* PHASE STRUCTURE' 
2 FUNCTION •,El0.3,t.Xf »WAVE STRUCTURE FUNCTION» SEICS) U 
GO TU 230 
END 

11 
i DCUOLE PRECISION FUNCTION FCTIXKAP) 

C INTEGRAND FOR CALCULATING ELEVATION ANGLE OF ARRIVAL CORRELATION 
REAL*« ARGl.FCT.XKAP 
CüWOfi   RHOfXLtXK.XKM.XKO |j 
ARG3=(XKAP/XKM)**2 
1F(AKG3.GT.I/A.)G0T0   ICO 
ARG2=XKAP*RHG 
ARGI=XKAP**2*XL/XK U 

IF(ARGI.EC.0.)GÜ IC 100 
FCT = (l.+DSIN(ARGl)/ARGl)*(BES0(ARG2)-BESlX(ARG2n*XKAP**3*PHIEPS(xf 
lKAPtXKMfXKO) U 
RETURN 

100  FCT=0. 
RETURN 
END 

94 

i 

L 



JULÜLF PRfCISlCN FUNCTIÜN FCrOIXKAP) 
: INIhUKANÜ FCH CALCULAriNG AZIMUTH ANÜLt OF ARRIVAL 

REAL*8 AKGUFCTOvXKAP 
LQPMÜN RHrtXLtXKfXKMfKKO 
ARG3s(XKAP/XKM)**2 
IF(ARGJ.Gr.l74.)GCrü 100 
AKG2-XKAP4<RH(] 
ARG1-XKAP**2*XL/XK 
IFIAKGI.FC.O.IGO TG 100 
FCTC^(l.*üSIN(ARGll/ARGn*BFSlX(ARC2)*XKAP**3*PHIEPS(XKAP,XKMtXK0) 
RETURN 

100  FCTt)»0. 
RFTURN 
ENC 

DCUBLfc PRECISICN FUNCTION FCTKXKAP) 
; 1N1EGRANU FOR CALCULATING INDEX STRUCTURE FUNCTION 

RkAL*b ARG?tFCTl»XKAP 
CCKPÜN RHC,XL»XK,XKMtXKO 
ARG1-XKAP**2*XL/XK 
ARG2-XKAP*RHn 
ARG3={XKAP/XKM)**? 
IF(ARG3.GI.I74.)GCrü 100 
IF(ARGI.E0.0.)GÜ TC 100 
FCIl=(1.-ÜSIN(ARG2)/ARG2)*PHIEPS(XKAP,XKM,XK0)*XKAP**2 
RETURN 

100     FCTUO. 
RETURN 
bNü 

DOUBLE PRECISICN FUNCTION FCT2(XKAP) 
C iNIEGRAND FÜR CALCULATING PHASE STRUCTURE FUNCTION 

REAL*8 ARol»FCT2tXKAP 
COPPON RHOfXLtXK.XKM.XKO 
ARG3>(XKAP/XKM)**2 
IF(ARG1.GT.U4.)G0IU 100 
ARGlsXKAP**2*XL/XK 
ARG2-XKAP4'RH0 
IFIARGl.EQ.OGO TO 100 
FCT2=(l.-BES0(ARG2»)*(l.+0SIN(ARGn/ARGn*PHIEPS(XKAP,XKM,XK0)*XKA 
IP 
REIURN 

100  FCT2=0. 
RETURN 
END 
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ÜÜLULC PKkCISICN FUNCTION PCTBCXKAP) 
C 1NTEGRANÜ FCM CALCULAflNG THfc WAVE STRUCTURE FUNCTION 

REAL*H XKAP,»-CT3 
CCKFON RHÜtXLtXKfXKHtXKO 
ARG2=XKAP*RHO 
ARG3=(XKAP/XKM)**2 
1F(ARG3.GT.17A.)GUTÜ ICO 
hCl3=(I.-BESü(ARG2))*PHItPS(XKAP,XKM,XKÜ)*XKAP 
RETURN 

100  FCT3=0. 
RETURN 
tNC 

FUNGI1CN PHltPS(XK(XKHvXKO) 
C REFRACTIVE IN1JEX FLUCTUATION SPECTRUM 

KFAL*Ö XK 
ltSTl=(XK/XKM)**2 
lF(TESri.üT.W4.)GC TG 100 
A=tXP(-TtSTl) 
b=(XK**2*XK0**2)**(ll./6.) 
IEST2=ALCG10(A)-ALCG10(D) 
lF(AbS(1EST2).GT.60.)GC TC 100 
PHItPS=.C33*A/B 
RETURN 

100  PHIEPS=0. 
RETURN 
END 
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SUbKCJUl INt   iNTGKKXLStXUS.NINT.FCT.YIND 
C   U^UEK   GF   MAO^ITUUF   INTtGRATIÜN   ROUT INF 

CUWiUN   /INTG/TEST 
KEAL*8   YINT.YINTGtFCTiXL.XU 
EXTERNAL   FCT 

IC03  FüRMATC»   INTEGRAL=   »t IPEIO.B.bX,•LOWER  LIMIT»   ».ElO.S.bX, 
MUPPLK   LIMI1=   SEIÜ.S) 

100?   FORMAT(//) 
IF(TEST.GT.O.)WRITE(6,1002) 
XL=XLS 
XU=XUS 
CALL DtG^ötXLtXUtFCT.YlNT» 
IF(TEST.GT.0.)WRITE(6tl003)YINrfXLfXU 
ÜÜ 300 J-=lfNI^T 
XL = XO 
XU=XÜ»10. 
CALL üCG96(XLtXUtFCT,YINTG) 
YINT=YINT+YINTG 
1 F( TEST.(it. 0.) WRITE (6,1001) YINTG.XLtXU 

3Ü0  CONTINUE 
RETURN 
ENÜ 

I 
I 
I 
I 
I 
I 
| \ 

SUBKCuriNE DCC9<,(XL,XUtFCr,YINf) 
C 96 POINT GAUSSIAN CUAURATURE INTEGRATION ROUTINE 

IMPLICIT RFAL*8 (A-H»0-Z) 
COMMON /GAUSS/X(48)fW(A8) 
SUM*(XU*XL)/2. 
ÜIF = UU-XL)/2. 
YINT=0. 
UC 100 1=1,48 
ARGl=ÜlF*Xm*SUM 
ARC2=-ÜIF*XfI)*SUM 

ICO  YINT = W( n*(FCT(ARGn + FCT(ARG2))*YINT 
YINT=YINT*OIF 
RETURN 
ENC 
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bUÜKCJUIINL GAUSZ f 
C KLAU AM SlÜKfc GAUSSIAN INTtGKATICN AKGUHtNTS AND WEIGHTS l 

iKPLICir KEAL*B (A-HfC-Z) 
LüffON   /GAUSS/XCföJ.Wt^b) f 
KeAL(b,9f^)»X ( 
KEAL(^fSS9)M 

999     I-0KMAT(^H6.15) r 
MRITEUffllinX 
MRI1t:(6,Llinw l 

HU   FCJKKAT (lX,6(Fl7.1t>,3X»/) 
KtTUKN 
LNt 

, 
FUNCriCN   BESü(X) 
REAL*8   THETA 

JO(X) 
IF(X.GT.3.)GC   Tu   100 
Y=X/3. 
BESC=1.0-?.2A999*Y**2*l.26562*Y«*A-,316387*V**6*,044447*Y**8-3,9A4| 

1AE-3*Y**10*2.1C000E-4*Y**12 l 
RETURN 

lüü     Y=3./X | 
rhETA=X-.78bi98-.0<il66 3*Y-3.9.>AE-05*Y*»2 + 2.62573E-3*Y**3-5.4l25E-4| 

l*Y**4-i'.93 33E-A*Y**b + 1.35;>äE-4*Y**6 
FC=.79/8846-7.7E-7*Y-5.5274E-3*Y**2-9.512E-5*Y**3+1.37237E-3*Y**4- 

17.2805E-A*Y**b+1.^476E-A*Y**6 
bESC=FC*DCCSCTHETA)/SCRr(X) L 

RETURN 

[ 
FUNGHCN BES1XJXI [j 
KEAL*H THETA 

: J1(X)/X , 
mx.GT.i. IGÜ TO 100 
Y = X/3. *- 
bESlX=.50-.562499*Y**2*.2l0935*Y**4-3.95428E-2*Y**6*4.43319E-3*Y** 
lb-3.1761E«A*Y**10+l.l09E-5*Y**12 
KFTtKN L 

100  Y=3./X 

rHETA=X-2.356l9#.l24996*Y*5.650E-05*Y**2-6.37879E-3«Y**3+7.43A8E 4! 
l*Y**4*/.9B24t-A*Y**!>-2.9166F-4*Y**6 
Fl=.7978«A+l.56E-6*Y+l.65966E-2*Y**2-l.7l05E-4*Y**3-2.495llE-3*Y** 
lA+1.13653E-3*Y*»b-2.0033E-4*Y**6 
bESlX = Fl*0COS(IHErA)/U*SQRT(xn 
RETURN U 
ENO 

i. 
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LISTING B-3 

C ♦♦♦♦ 10.6 KICKCN MRUfAGATICN PHENOMENA PROGRAM ♦♦*♦ 
C *««♦* ANGLt Ül- ARRIVAL ANU RFLATFU STRUCTURE FUNCTIÜN CALCULATION 
t       HtR THE VON KARMANN SPECTRUM, AND SPHERICAL WAVE INPUT ♦♦♦♦♦ 

EXTERNAL FCT(rCIC,FCIItFCI2*FCT3 
KEAL*b YlNTfYINTG,FCT,YL,XU,YINTltYINT2tXKAP 
COMMON RHO,XL,XK,XKM«XKO 
COMMON /INTG/TEST 
CALL GAUSZ 
TEST^O. 

C KFAD INPUT ÜATA 
LUC  RbAÜ(5,900)XLO»XL,XLAMBfXCAPLO«A 
900  F0RMAT(5E10.3) 

1F(XL.£C.0.)G0 TO 201 
C CALCULATE CONSTANTS 

XKM=5.9A/XL0 
XKL=A/XCAPLO 
PI = 3.1A15')?7 
XK-6.28318A/XLAMB 

C READ ARGUMENT VALUES 
lt»0  REAU(<!>,9Ü0)RH0SfDhLi<H0,XNR 

IFIXNR.EU.OGC TO 100 
C CALCULATE ANGLE OF ARRIVAL CORRELATION 

XNR=XNR-1. 
NR«XNR 
WR1TE(6,1ÜU2) 

1002 FORMAT(MANGLE OF ARRIVAL CORRELATION FUNCTION •) 
WRITE(6,1005)XL,XLU,XCAPLO,A,XLAMB 

1005 FORMAT«» RANGE=»,1PL11.3,• MS5X,»INNER SCALE= »,E10.3«* M».5X, 
POUTER SCALE= •♦Ei0.3t» M»,5X,»A= • ,L 10.3,5X, »LAMBDA» SE1Q.3,» M» 
2) 
DC 200 I-ltNR 
RHC=RHLS*üELRHC*FLCAT(1-1) 

C ELEVATICN ANGLE LF ARRIVAL CORRELATION 
CALL lNTGRLlC.,l.E-3.8tFCT,YINT) 
UALPHA=.5«PI»*2*8.*YINT 
IFIRHO.EC.O.)UAN-BALPHA 
bALPHN=BALPHA/8AN 
WRITE(b*lO0O)RHO,BALPHAvBALPHN 

1000 F0RMAT(»0RHÜ= »,lPfcl0.3,5X,»BALPHA» »,E10.3f5X,»BALPHAN» »,fcl0.3) 
C AZIMUTH ANGLE CF ARRIVAL CORRELATION 

CALL INTGRL(0.»l.t-3,8,FCT0,YINT) 
BBETA=.5*PI**2»8.*YINT 
IF(RHG.EC.0.)beN=6BETA 
ÜBETAN-BBETA/ßBN 

1001 F0RMAT(21X,('BBETA*  ♦ , 1PE10. 3,bXt • BBETAN=  »,E10.3) 
200  WKITt(6,l001>bBETAfBBETAN 

GO TO 130 
C CALCULATE STRUCTURE FUNCTIONS 
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C ktAÜ INPUT DATA 
?UL  KlfAÜ(t>t900)XLU,XLfXLAMBtXCAPLO»A 

1F(XL.EQ.0.)CALL EXIT 
C CALCULATE CONSTANTS 

XK=6.2b3l^84/XLAMB 
XKM=5.94/XL0 
XKO=A/XCAPLÜ 
WKITE(6«1003) 

100i FORMAT(»ISTRUCTURE FUNCTIONS AND SPECTRA •) 
C READ AKGUMENI VALUES 
230  KEAÜ(>t90Q)RhÜStDhLRHQ(XNR 

IF{XNR.EC).0.)GC TO ?01 
NR=XNR+I. 
00 220 1=1,NR 
RHC=RHOS+OELRHO*FLÜATII-l) 
XKAP=RHn 

C REFRACTIVE INDEX FLUCTUATION SPECTRUM 
PHIK=PHIEPS(XKAP,XKM,XKO) 

C REFRACTIVE INDEX FLUCTUATION STRUCTURE FUNCTION 
CALL INTGRHl.E-03,l.E-02,8,FCTl»YINTl) 
üN=e.*PI*YINTl 

C PHASE STRUCTURE FUNCTION 
CALL INTüRL(l.t-02,l.0E-0l,6,FCT2,YlNT2) 
nS=YINT2*PI*«2*XK**2*8. 

220  WRITE(6,1004)RHÜ,PHIKfON,DS 
100^ FOKMAT(,OARGUKENT= •,IPEIO.3,/,• REFRACTIVE INDEX FLUCTUATUION SP| 

ICTRUM» •,El0.3f5X.»STRUCTURE FUNCTION« »,£10.3,/t» PHASE STRUCTURl. 
2FUNCTI0N= »,£10.3) 
GO TO 230 
END 

r 
i 

i 
; 

0 
D 
i 

UCCOLE PRECISICN FUNCIION FCT(XKAPPA) 
C INIEGRANÜ FOR CALCULATING ELEVATION ANGLE OF ARRIVAL CORRELATION 

EXTERNAL FCT4 
REAL*8 ARGl,FCT,XKAP,CXLfDSPHRfXKAPPA,FCTA 
COfMON RHO,XL,XK,XKM,XKO 
COUPON /SPHEKL/XKAP 
XKAP-XKAPPA 
UXL^XL 
ARG2=XKAP*RH0 
CALL DGGb IO.,CXL,FCT4tDSPHR) 
FCT=(BESC(ARG2J-BES1XIARG2I)*XKAP**3*0SPHR 
RETLRN 
END 

100 

0 
i 
i 

i. 
i 
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UGLlbLE   PRECmCN   rUNCTIfJN   FCrO(XKAPHA) 
C   INTEGRAND   FOR   CALCULATING   AZIMUTH   ANGLE   OF  ARRIVAL 

EXTERNAL   PCT4 
REAL*8   AHGl,FCro,XKAP,DXLfCSPHR,XKAFPAfFCH 
CCffON   RH{IfXL»XK,XKM,XKO 
CCPfÜN   /SPhERh/XKAP 
XKAP=XKAPPÄ 
ARG2=XKAP*RHC 
ÜXL-XL 
CALL   LiCGb   (0.,UXL,FCTA,DSPHR) 
FCTC=bFSlXCAKG2)*XKAP«*3*USPHR 
REICRN 

UClifiLE   PRECISICN   FUNCTION   FCTKXKAPJ 
C   INTEGRAND   FOR   CALCULATING   INÜFX   STRUCTURF   FUNCTION 

KFAL*b   ARG2,FOTl,XKAP 
CCNKON   RHO.XLfXK.XKK,XKO 
ARGl=XKAP**2*XL/XK 
ARG2=XKAM«RH0 
ARG3=(XKAP/XKM)**2 
IF{ARGi.bl.17^.)GCTU   100 
IF(ARGl.Lg.O.)G0   TC   100 
FCTl = ( I.-f)SIN{ARG2J/ARG2)*PHIEPS(XKAP.XKM,XK0)*XKAP**2 
RETURN 

ICC     FCTI=0. 
RETURN 
END 

ÜOUBLE   PKECISICN   FUNCTION   FCT2(XKAPPA) 
C   INTEbRAND   FCR   CALCULATING   PHASE   STRUCTURE   FUNCTION 

EXTERNAL   FCT^ 
REAL*«   ARGUfCT2,XKAPf0SPHR,DXL,XKAPPA,FCTA 
COPMON   RHOtXL,XK,XKP,XKO 
CCPPON   /SHHERt/XKAP 
XKAP=XKAPPA 
ARG2=XKAP*RHC 
UXL=XL 
CALL   DtGH    (0.,CXL,FCTA,UbPHR) 
FCT2=(l.-ÜES0(AftG2))*DSPHR«XKAP 
RETURN 
ENC 
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UCLULE   PRCClSiCN   FUNCflCN   FCT3(XKAP) 
C   iMft-GKAMJ   H}*   CALCULATING   THE   WAVE   STRUCfURE   FUNCTION 

KfcAL*b   XKAPfFCT3 
CGft^ON   RhOfXL,XK,XKM,XKU 
ARG2=XKAP*RHG 
ARG3=(XKAP/XKK)**Z 
1F(AKG3.GT.I74.)GGTU   100 
FCTi=(l.-BESG(ARG?n*PHIFPS(XKAPfXKM,XKO»*XKAP 
RETURN 

ICO  FCT3=0. 
RETURN 
ENU 

DOUBLE PRECISION FUNCTION FCT4(ÜETA) 
REAL*a XKAPfüETAfFCT4 
LCfHüH   RHCtXLtXKtXKMtXKÜ 
CCFPON /SPHERF/XKAP 
ARGl=XKAP*Xl/OETA 
FCTA=lXL/üETA*CCCS(XL*IXL-CETA)*XKAP**2/(2.*XK*0eTA)))**2*PHlEPS( 
lARGltXKMtXKO) 
RETURN 
ENC 

FUNCNCN PHIFPS(XK,XKM«XKO) 
C REFRACTIVE INDEX FLUCTUATION SPECTRUM 

REAL*b XK 
TeSTl=(XK/XKM)**2 
IF(TESTl.GT.l/A.)GC TG 10Ü 
A=EXP(-TtSTl) 
b=(XK**2*XK0*#2)**(U./6.) 
TEST2=ALCG10(A»-ALCG10(B» 
IF(ABS(TbST2).GT.60.)G0 TO 100 
PHIfcPS=.033*A/e 
RETURN 

ICO  PHItPS=0. 
RETURN 

[ 

I 
i 
i 

I 
I 
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SUbKÜUI [riE   INfGKUXLSf XUStNINNFCr.YlND 
C   URü^K   CF   MAGNITUÜF   INTEGRATION   RDUTINE 

LOMMUN   /INTG/1FST 
«EAL*8   YINT.YINTCFCT.XUXU 
EXTERNAL   FCT 

IUÜ3   FORMAT«1   INTLGHAL=   • , IPE 10.3,5X,•LOWER   LIMIT» 
I^UPPER   LIMIT=   »,£10.3) 

100?  FORMAT(//) 
IF(TEST.GT.0.)WRITE(6,1002) 
XL=XLS 
XIJ=XUS 
CALL   DÜG^ÖtXLtXUtFCI.YINr) 
IF(TEST.GT.0.)WRITE(6,1003)YINTtXLtXU 
UÜ   300   J=1,NINT 
XL = XU 
XU=XU*10. 
CALL   D(.'G96(XL,XUfFCT,YINTG) 
YIM = YINr + YlwrG 
IFITEST.GT.O.)WRITE(6,1003)YINTG,XLfXU 

300  CONflNUE 
RETURN 
ENÜ 

•tkl0.3t5Xt 

i 

i 1 

SUBROUTINE DtG96 UL, XU, KT, Y INF) 
C 96 POINT GAUSSIAN CUAOKATURF INTEGRATION ROUTINE 

IMPLICIT KEAL*8 (A-H,0-Z) 
COMMON /GAUSS/X(4U)VWU8) 
SUMsIXU + XD/i». 
ÜIF=(XU-XL)/2. 
YINT=0. 
DO 100 Ul,A8 
ARGl-DIF*X(I)+SUM 
ARG2=-UIF*X(n4SUM 

100  YINT = w(I)*(FCT(ARGl)+i C      ARG?>)*YINT 
YIM = YINT*CIF 
RETURN 
fcNU 

SUBROUFINF GAUSZ 
: KEAÜ ANL SlCKb GAUSSIAN INIFGKATION 

IMPLICIT RFAL*Ö (A-H,C-Z) 
COfMON /GAUSS/XlABk.WCtH) 
REAl)(i>,S99)X 
REAC(b,999)W 

999  FÜRMAT(5Fl6.1b) 
WRITE(6.1111)X 
WRITEUf innw 

llll FCRMAT(lXf6(F17.l5t3X)/) 
RETURN 
ENL 
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FUNCMCN   BESCi(X) 
C   JC(X) r 

lFCX.Gr.3.)Gü   TO   100 
Y = X/J. 
ÜiES(.= l.0-2.249q9*Y**?*1.26b62*Y**^-.3l638 7*Y**6+.OA4447*Y**8-3.<)<»« 

l<»t- l*Y**lü*2. I0000t-4*Y**12 
RtlLRN ' 

100     Y=3./X 
lHCTA = X-.78»»398-.04l663*i('-3.9&4E-0i*Y**2 + 2.62573E-3*Y**3-5.4125E- 

l*Y*»A-2.93 3 3E-4*Y**b*l.3tj!>8t-4*Y**6 
hÜ=.7978846-7./C-/*Y-5,5274E-3*Y**2-9.')12E-5*Y**3*1,3723/E-3*Y**4- 

I7.2805E-<i*Y**b*l .««76E-4*Y**6 
BtSOFC+COSHHEm/SORKX) 
REILKN 
fcNC 

: HUNCTICN BESIX(X) 
REAL*K IhEIA 

C J1<X)/X 
1E(X.GT.3.)G0 TO 100 
Y=X/3. 
HfcSiX=.5ü-.5ü2A9q*Y**2*.2l0935*Y**A-3.95428E-2*Y**6+4.43il9E-3*Y** 
l8-3.l76lt-4*Y**lO*l.l09E-b*Y**12 
KfTLRN I 

100  Y=3./X 
THErA=X-2.356l9*.124996*Y*S.6!>0E-05*Y**2-6.37879E-3*Y*«3+7.4348E- 
l*V»*«+7.g82At-A*Y**5-2.9l66E-«*Y**6 
H = »/978b4*l.56E-6*Y*l.65966F-2*Y**2-l.7lC5E-4»Y**3-2.495llE-3*Y 
14*1.13653E-3*Y**5-2.0033E-4*Y**6 
bESlX=Fl»DCOS(IHErA)/(X*SÖRT(X)) 
KETLRN 
END 

;] 

] 
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Columns 

1-10 RHOS = starting value of p 
11-20 DELRHO = increment 
21-30 XNR = total number of increments. 

If XNR = 0, a new parameter card is read, otherwise another set of 
separation parameters is expected. 

The data deck for the structure function calculations is 
identical to the correlation data deck. The same variables are used 
and the same action is taken for XNR = 0. When XL = 0, the program 
is terminated. 

2.   Large Aperture Calculations 

Two programs were written to perform the calculation of the 
large aperture results. One calculates the large aperture angle of 
arrival and linear phase error; the other calculates the error between 
the large and small aperture results. Both programs use the Von Karmann 
spectrum. 

The large aperture angle of arrival program shown in listing 
{B5) performs four nested integrations to calculate KOX, <a%>  and 
<A2K>. Gaussian quadrature integration of different orders is used in 
each case. The Gaussian subroutines are contained in the IBM Scientific 
Subroutine Package. They are essentially the same as DQG96 used earlier 
except the weighting factors and arguments, are contained in the 
subprograms. The large aperture error program evaluates the error 
function A(<R) in a similar manner. 

The input data for both programs is read with a namelist format. 
The variables are 

XCAPL0 = L0, the outer scale in meters 
XL0 = Ä0, the inner scale in meters 

RCAP = R, the aperture radius in meters 
A = A, normalizing constant in Von Karmann spectrum 

XLAMB = x, wavelength in meters 
XL = L, range in meters. 

After each calculation a new data card is read. The program is 
terminated by setting XLAMB =0. 
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1 LISTING B-5 

I       C **** 10.6 MICRON PROPAGATION PHENOMENA PROGRAM **** 
C **** ANGLE OF ARRIVAL AND ERROR CALCULATION 

JC      USING THE PHASE STRUCTURE FUNCTION **** 
IMPLICIT REAL*8 (D) 
COMMON R,RH0tGAMMA9RCAP 
COMMON /PHI/XKMtXKO 

I COMMON /PHASE/XKtXL 
I COMMON /APRAD/DDCAP 

EXTERNAL DINTlvOOEN«DERFCT 
■ NAMELIST/INPUT/XCAPLO«XLOvRCAP,AvXLAMBffXL 
j PI»3.1415927 

WRITE(6tlOOO) 
1000 FORMAT (UANGLE OF ARRIVAL CALCULATION USING PHASE STRUCTURE FUNCTI 

1 ION*/* (RESULTS NORMALIZED TO CN**2)•) 
» 1005 FORMAT!* RANGE»*«IPE11.3t* M*,5X,*INNER SCALE- *tE10.3t* M*t5X. 

1*0UTER SCALE» •♦E10.3,* M*,5X,*A« *,E10.3,5Xf*LAMBOA= SE10.3,* M* 

I 100  REA0(5tINPUT) 
WRITE(611005)XLt XLOt XCAPLO» A,XLAMB 

• IF(XLAMB.EQ.O.)CALL EXIT 
f XK»6.28318/XLAMB 
1 XKM»5.92/XL0 

0RCAP«RCAP 
I XK0=A/XCAPL0 
I CALL0QGl2(0.00tDRCAPv0INTlt0RINTl) 

CALL0QG12(0.00t0RCAPtD0ENtORDEN) 
GX0«-4.*PI**2*XK**2*XL*DRINTl/{PI*DRDEN**2) 
A0A»GX0/XK**2 
DDCAP»2.*DRCAP 
CALL DQG12(0.,00CAP.0ERFCT»DRNT1) 
DERR0R=4.*PI»XK**2*XL*0RNT1/DRCAP**2 
DPSERR»DERR0R/XK**2 
WRITE(6t1001)DRCAP,GXOtDERR0RtADA,DPSERR 

| 1001  FORMAT!*   APERTURE  RADIUS»   *f1PE10.3.5X**KAPPA  X»   •,E10.3.5Xf«ERROR 
t 1»   *,E10.3/33X,*MEAN   SQUARE   ANGLE  OF   ARRIVAL»   *»E10.3>5X»*ERROR»   *» 

2E10.3) 
i GO  TO   100 
| END 
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DOUBLE   PRECISION  FUNCTION  OERFCT(DR) 
C   LINEAR   PHASE   ERROR  FUNCTION 

IMPLICIT   REAL*3   (0) 
EXTERNAL   DFCT1 ' 
C3HM0N   R,RHO,GAHMA,RCAP 
COMMON   /APRAD/OOCAP 
RHC-DR 
OARG-DR/DOCAP 
CALL   i.MTGRLn.E-02.l.0E-01t6,0FCTl,DINTl) 
0FL=6.*DARC0S(0ARG)-(14.*DARG-8.*0ARG**3)* DSQRTil.-DARG**2) 
üERFCT^OR*DFL*DINTl 
RETURN 
END 

DOUBLE PRECISION FUNCTION DFCTKDXKAP) 
C INTEGRAND FOR CALCULATING PHASE STRUCTURE FUNCTION FOR OERFCT 

IMPLICIT REAL*8 (0) 
COMMON R,RHOtGAMMA,RCAP 
COMMON /PHI/XKMtXKO 
COMMON /PHASE/XKfXL 
ARC3»(DXKAP/XKM)**2 
IF(ARG3.GT.174.»GOTO 100 
0ARG1»DXKAP*«2*XL/XK 
ARG^-DXKAP^RHO 
IFfDARGI.EQ.OGO TO 100 
XKAPSDXKAP 
DFCTl=(U-BES0(ARG2) )*( l.+DS INCDARGl )/OARGl )*PHIN(XKAPtXKMtXKO) * 
10XKAP 
RETURN 

100  DFCT1=0. 
RETURN 
END 

DOUBLE PRECISION FUNCTION OINTKüR) 
C R INTERGRANO 

IMPLICIT REAL*8 (0) 
COMMON R,RHO,GAMMA,RCAP 
EXTERNAL 0INT2 
R=OR 
DRCAP^RCAP 
CALL   OQGB   (0.00,0RCAPVDINT2,0RINT2) 
i)INTl = 0RINT2»R*R*W(R) 
RETURN 
END 

: 
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DOUBLE PRECISION FUNCTION DINT2(DRHO) 
C RHO INTEGRAND 

IMPLICIT REAL*8 (01 
COMMON R.RHO,GAMMA,RCAP 
EXTERNAL DINT3 
RH03DRHO 
CALL 0QG4 (0.00«3.1415927D0,OINT3,ORINT3) 
01NT2«0RINT 3*RH0*RH0*W(RHO) 
RETURN 
END 

DOUBLE PRECISION FUNCTION DINT3(0GAMMA) 
GAMMA INTEGRAND 

IMPLICIT REALMS (D) 
COMMON R,RHO.GAMMA,RCAP 
EXTERNAL DFCT 
GAMMA-DGAMMA 
CALL INTGRL«l,0E-03,l.E-02,7,DFCT,DPHASE) 
DINT3«DPHASE*C0S(GAMMA) 
RETURN 
END 

DOUBLE PRECISION FUNCTION DFCTIDKAP) 
PHASE STRUCTURE FUNCTION INTEGRAND 

IMPLICIT REALMS ID) 
COMMON R,RHO,GAMMA,RCAP 
COMMON /PHASE/XK,XL 
COMMON /PHI/XKM,XK0 
ARG»DKAP*SQRT(R*R*RH0*RH0-2.♦RH0*R*C0S(GAMMAI) 
XKAPsDKAP 
DARG1»XKAP*«2*XL/XK 
OFCT=Cl.-BESO«ARG))» PHIN(XKAP,XKM,XKO)*XKAP*(l.^DSINlDARG1)/DARGl 

1) 
RETURN 
END 
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HUNtnUN PHIN(XKAP,XKM,XKO) 
C KhFKACTIVE INDEX FLUCTATION SPECTRUH 

rEST>(XKAP/XKM)*«2 
lF(TEST.Gr.l74.)Ga TO 100 
A*£XP(-TESn 
B»(XKAP**2*XK0«*2)*»lll./6.) 
TESTt«ALOG10(A)-ALOG10(BI 
IF(ABS(TEST1).GT.30.}G0 TO 100 
PHIN«.033*A/B 
RETURN 

100  PH1N«0. 
RETURN 
END 

FUNCriUN W(R) 
C APERTURE WEIGHTING FUNCTION 

W«l. 
RETURN 
ENO 

ÜOUBLE PRECISION FUNCTION ODEN(DR) 
C OENOMINATOR INTEGRAND 

IMPLICIT REAL*8 (01 
R=DR 
0DEN=DR**3*H(R) 
RETURN 
ENO 

SUBROUTlNf.   lNlGKL(XLStXUSfNINI,FCT,YINT) 
C   URUFK   OF   MAGwITUUt   iNFEGRATIfiN   ROUTINE »■ 

RFAL*b   YINT,YINTÜ,FCT»XL,XU 
tXTFRNAL   FCJ i 
XL=XLS I 
XU=XUS 
CALL   ÜUG3?(XL,XU,FCTfYINT) . 
ÜÜ   300   J=1,N1NT 
XL = XÜ 
XU=XU*10. 
CALL   DOGi^CXLfXUtFCftYINTG) 
YINT=YINT+YINTG L 

3ÜÜ     CONTINUE 
RETURN I 
tNO 
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FUNCTION  BESGIXI 
C  JOU) 

IF(X.GT.3.)GO   TO   100 
Y»X/3. 
BESP«l.0-2.24999*Y**2"H*26562*Y**4-.3l6387*Y**6+.044447*Y**8-3.S44 

UE-3*Y**10*2. IOOOOE-4*Y**12 
RETURN 

100     Y-3./X 
THETA=X-.785398-.04l663*Y-3.954E-05*Y*^2*2.62573E-3*Y**3-5.4l25E-4 

l*Y**4-2.9333E-**Y**5+l.3$58E-4*Y**6 
F0«,7978846-7.7E-7*Y-5.5274E-3*Y**2-9.512E-5*Y**3*l.3723?E-3*Y**4- 

17,2805E-4*Y**5*1.4476E-4*Y**6 
BES0«FO*COS(THETA)/SQRT(X) 
RETURN 
END 
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LISTING B-6 

C   ♦♦♦♦   10.6   MltKON  PROPAGATION  PHENOMENA   PROGRAM   »♦♦♦ 
C   ♦♦♦♦   ANGLE   OF   ARRIVAP. ERROR   CALCULATION 
C USING   THE   PHASE   STRUCTURE   FUNCTION  ♦♦♦* 

IMPLICIT   REAL*8   (0) 
COMMON  RvRHOfGAMMA»RCAPvXKAP 
COMMON   /PHI/XKM»XKO 
COMMON  /PHASe/XK»XL 
EXTERNAL   OFCT 
NAMbLISr/INPUT/XCAPLOtXLOvRCAP»A«XLAMUvXL 
PI»J,l4l!>927 
NR1TE(6,10001 

1000 FORMAT (MANGLE   OF   ARRIVAL   CALCULATION   USING  PHASE   STRUCTURE   FUNCTI 
ION1/»    (RESULTS   NORMALIZED   TO  CN**2)•) 

100b   F0RMAT(»ÜRANGb=»tlPE11.3,«   M'.SX.MNNER   SCALE»   SEIO^,1   MS^Xt 
I'OUTER  SCALE«   StlO-B.»   M»f!>X,»A=   • ,E10.3t5Xf »LAMBDA»   '.ElO^t1   M' 
2) 

100     READ(5fINPUT) 
MRITF(6»1005)XLtXLOfXCAPLOvA,XLAMH 
XK»6.28318/XLAMB 
XKM=».92/XLO 
XKO-A/XCAPLO " 
URCAPsRCAP 
CALL   INTGRL(1.0E-03,l.E-02,7,0FCTfDELAOA) 
DELTAA*  4.*PI»*2*XL*DELA0A 
WRlTE(6*100nORCAP,DELrAA 

1001 FORMATM   APERTURE   RADIUS»   *• IPE1Ü. 3*bXt * DELTA   ADA»   '«ElO.lf/) 
GO   TO   100 
END 

DOUBLE PRECISION FUNCTION DFCT(OKAP) • 
C PHASE SIRUCTURE FUNCTION INTEGRAND 

IMPLICIT REAL*8 (D) i 

REAL*8 AOASA»AOALAVBES1X,AOAL 
COMMON RvRHO,GAMMA*RCAP,XKAP 
COMMON /PHASE/XK.XL t 
COMMUN /PHI/XKMvXKO 
EXTERNAL DINT1 | 
XKAP=DKAP 
DARG1=XKAP**2*XL/XK 
ÜRCAP=RCAP 
CALLD0G12(0.DÜt0RCAP,üINTl»DRINTl) 
A0ALA»-l6.*DRINTl/(3.l415y2*0RCAP**8) 
AÜAL»A0ALA/DKAP**2 
AÜASA«BESIX(0KAP*DRCAP)/2.00000000000000D0 
DIF>AOASA-AOAL 
UFCT»ÜIF«uKAP**3*PHlN(XKAPfXKM,XK0)*(l.*ÜSlN(DARGn/DARGn 
RE I URN 
END 
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DOUBLE PRECISION FUNCTION DINTKÜR) 
C K INTER6KAND 

IMPLICIT REALMS (0) 
COMMON R«RHO,GANMAtRCAPtXKAP 
EXTERNAL OINTZ 
R*ÜR 
ORLAP>RCAP 
CALL 00G8 (O.U0t0RCAP,OINT2vDRINT2) 
0INTl=0RINT2*R*R 
RETURN 
END 

DOUBLE PRECISION FUNCTION DINT2(URHU) 
C KHO INTEGRAND 

IMPLICIT REAL*8 ID) 
COMMON RtRHOtGAMMA,RCAPfXKAP 
EXTERNAL DINTI 
RHO-DRHO 
CALL  DQG4   (O.DG, 3.U15927D0tDlNT3.DRiNT3 ) 
DINT2»ÜRINT3*RH0*RH0 
RETURN 
END 

DOUBLE PRECISION FUNCTION DINT3(DGAMMA) 
C GAMMA INTEGRAND 

IMPLICIT REAL*8 (D) 
KEAL*8 BESO 
COMMON R.RHOfGAMMAtRCAPtXKAP 
EXTERNAL DFCT 
GAMHA*DGAMMA 
DPHASE»l.OO0O00000000000-BESO(XKAP*DSQRT(R**2*RHO»*2-2.*R*RHO* 

IDCOS(DGAMMAI)) 
DINT3>DPHASE*C0SIGAMMA I 
RETURN 
END 
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FUNCUON  t>HIN(XKAPvXKM»XKO) 
C   KhFRACTIVE   INÜEX   FLUCTATION  SPfcCTHUM 

TEST*(XKAP/XKMI**if 
IF(TESI.Gr.U4.)G0  TÜ   iOO l 

A=EXP(-rEST) 
B=(XKAP**?*XKÜ*»2)**(ll./6.l 
TESnsALUG10(A)-ALÜ610(B) 
IF(ABS(TESTll.GT.30.IGO TO   IOO 
PHIN«.033*A/B r 
RETURN 

IOÜ  PHIN*0. 
RETURN 
ENÜ 

SUBROUTINE INIGRUXLSiXUStNlNTfFCrtYlNr) 
: URUEK OF MAGNITÜUE INfEGRATION ROUTINE 

REAL*« VlNT»YINTG,FCTfXL»XU 
EXTERNAL FCT 
XL=XLS 
XO=XUS r 
CALL L»tGl6(XLfXU,FCT,VINT) 
00 300 J=1,NINT 
XL = XU 
X0=XU*10. 
CALL UÜGlö(XL,XU,FCTtYINTG) L 
YINT=YINT*YINTG 

300  CONTINOE f 
KETUKN 
bNO 

FUNCTION BESO(X) I 
KEAL»8 BESü.X,Y,FO.THfcTA 

C JU(X) 
IFIX.GT.i.)GO Tu 100 
Y-X/3. 
öES0=l.0-2.24999*Y**2 + l.26i62*Y**<»-.3l6387*Y**6*.0444^/*Y**8-3.9^ 
1*E-3»Y**10*2.IOOOOE-4*Y**12 
RETURN 

100  Y»3./X L 
THETA«X-.F85398-.04l663*Y-3.954E-0b*Y**2*2.625r3E-3»V**3-5.Al25E'4 
l*Y**4-2.9333E-4«Y**5+1.3!>58E"4*Y**6 
FO«.7978846-7.7E-7*Y-5.527*E-3*Y**2-9.5l2E-5*Y*»3*l.37237E-3*Y**4 
17.280bE-4*Y**5*l.4476E-4*Y**6 
BESO«FO«OCOSITHETA»/OSQRT(Xl 
RETURN 
END L 
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FUNCIION  BESIX(X) 
KEAL*tt   THETAvFl»Y»BESlXtX 

G Jim/x 
IFU.GT.J.IGO  TU  100 
Y-X/3. 
ttfcSlX».50-.562499*y**2*,?l0935*Y**4-3.95428E-2*y*»6*4.43319E-3*Y** 

18-3.t/61E-4*Y**10*1.109E-5*Y**12 
KETURN 

100     Y-3./X 
THETA«X-2.35619+,l24996*Y*5.650E-05»Y**2-6.3/879E-3*V**3*7«43^8E-4 

1*Y**4^7.9824E-4*Y**S-2.9166E-4*Y«*6 
Fl».T97884*l.56E-6*Y+l.6!»966E-2*Y*^2-1.7l05E-4*Y**3-2.495UE-3*Y** 

l^*1.136*3E-3»Y**5-2.0033E-4*Y*»6 
BESlX»Fl*OCOS(THETA)/(X*OSQRT(Xn 
RETURN 
END 
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